Lightweight Flow Setup

Wirespeed Flow Reservation

Jon Turner
jst@cs.wustl.edu
http://www.arl.wustl.edu/arl
Resource Reservation in Internet?

- Bandwidth reservation can provide dramatically better performance for some applications.

Obstacles to resource reservation in Internet.
 » distaste for signaling protocols
 » perceived complexity of IntServ+RSVP
 » requires end-to-end deployment
 » little motivation for service providers

How to get resource reservation in Internet?
 » keep it simple
 • focus on top priorities - one-way unicast flows
 • avoid complex signaling - leverage hardware routing mechanisms
 » make it useful when only partially deployed
 » provide motivation for ISPs to deploy it
Basic LFS Operation

- One way, unicast setup with partial reservation.
 - complete reservations *locally* when bandwidth released
- Optional ack returned by far-end access router.
- Reservation may terminate explicitly or time out.
- May alter reserved bandwidth but no re-routing.
Soft Reservations

- Basic LFS provides **firm reservations**.
 - user guaranteed bandwidth until releases

- Can extend to provide **soft reservations** as well.
 - soft reservation can be adjusted by the *network* as traffic changes
 - can be intermixed with firm reservations to provide a firm minimum, plus more bandwidth as available

- Uses of soft reservation.
 - apps. that need guaranteed minimum and can sometimes use more, but can adjust use to what’s available
 - more rapidly responding congestion control for traditional best-effort traffic
Basic IP Option for LFS

- **Code** identifies LFS option.

- **Operations**
 - request firm reservation
 - request soft reservation
 - release state

- **Flags**
 - sender status request
 - sender network status request
 - public network status request
 - intra-domain status request

- **Rrate**: requested rate.
- **Arate**: allocated rate.

- **Trace** used by each domain to track usage.

<table>
<thead>
<tr>
<th>IP header (fixed part)</th>
</tr>
</thead>
<tbody>
<tr>
<td>code</td>
</tr>
<tr>
<td>Arate</td>
</tr>
</tbody>
</table>

- **Allocated rate** stored at “last hop” router for status generation

- **F.P. rates with 4 bit mantissa, 4 bit exponent.**
 - specify rates from 64 Kb/s to 4 Gb/s, 6%
 - “granularity”
Network providers need to monitor LFS usage for network management and accounting purposes.

- trace field used by ingress router of each domain to mark LFS packets with domain-specific identification
- egress router of each domain maintains record of each LFS flow, including copy of trace field
- end-to-end records created through off-line accounting resolution mechanisms
Status Reporting

- Basic LFS option supports sender status and trace field for accounting.
- Network providers likely to want more.
 - sender net status allows LFS service verification
 - public net status allows “end-to-end” status check
 - intra-domain status for verifying local status
 - each “extra” status report requires insertion of requestor’s IP address, increasing LFS option length
Partial Deployment

- Receivers need not be LFS-aware.
 - web site may use LFS to reserve bandwidth for streaming media - users benefit, even without LFS-aware hosts

- Issues with non-contiguous LFS domains.
 - route changes may create “orphan reservations”
 - no simple way to determine status reporter

- No support for non-contiguous LFS domains.
 - LFS router forwarding to a non-LFS router (or host) strips LFS option and implements status reporting
 - status report includes IP address of reporting router, letting sender know how far the reservation went

- Public IP carrier can accept LFS option from client networks (LAN) even if client net is not LFS-aware.

- Clients may use tunnel to access LFS service.
Regulating LFS Use - Net Access Svc

- Permitting unconstrained access to LFS creates big security vulnerability.
- Limit use to authorized users.
- Limit number of reservations and amount of reserved bandwidth by authorized users.
 - access router keeps record and enforces limits
 - complication - user may use LFS from multiple locations
 - maintain records in distributed set of servers - each server keeps records for some fraction of the users - use hashing to select
- Access router needs means to identify user.
 - host IP address insufficient (DHCP, NAT)
 - encryption-based authentication (IPSEC)
- Combine access control with usage accounting.
- What special issues arise with multiple domains?
Implementation - Router Input

- If flow table entry present, use stored next hop.
- If no flow table entry, lookup route & create entry
 » store selected next hop in flow table entry
 » may use datagram forwarding table or separate LFS forwarding table
 » LFS table may support list of next hop candidates
If flow table entry present, use it to find queue, otherwise create an entry & allocate queue.

If firm reservation specified, update entry.
- keep list of unsatisfied reservation requests to process as bandwidth becomes available

If soft reservation, update fair share, pacing rate.
“Special” Processing

- At first LFS router in path.
 » verify usage privileges, check restrictions

- At sender network’s gateway router.
 » optionally request sender network status

- At entry to public network.
 » maintain status information, optionally request public net status
 » verify usage privileges of client networks

- At last LFS router in path.
 » maintain status information
 » generate sender status and sender network status packets
 » strip LFS option

- At domain entry.
 » update trace field, optionally request intradomain status

- At domain exit.
 » maintain domain-specific status, send intradomain status
Routing Flow Reservations

- May use standard datagram routing for flows.
- QoS routing can produce better results.
- Shortest path routing with suitable cost metric.
 - for lightly loaded paths, cost equals sum of link lengths (not just hop count)
 - increase cost of busy links to reflect blocking potential
- Multiple-choice forwarding table.
 - standard forwarding table includes single next hop
 - when link to next hop is too busy to accept reservation, alternate choices can be useful
 - ordered list of next hops
 - select first one with sufficient bandwidth on connecting link
 - if none, select one with smallest backlog of unfulfilled reservations
 - routes reservations around links that become busy between routing updates
Summary

- LFS provides simple reservations for QoS.
 - no complex signaling, wire speed setup
 - limited deployment can be broadly beneficial
 - support for usage monitoring & accounting gives network providers a motivation to deploy service

- Network access service for regulating usage.
 - preliminary specification has been developed
 - uses IPSEC for host/user authentication

- Performance analysis, simulation study underway.

- Routing issues.
 - evaluate QoS routing with multiple-choice forwarding
 - link state distribution for inter-domain routing
 - inter-domain routing policies