Implementation of a Content-Scanning Module for an Internet Firewall

James Moscola, John W. Lockwood, Ronald P. Loui, Michael Pachos

April 9, 2003

Outline

• Introduction
• Motivation
• Regular Expression Scanning
 – NFA vs. DFA
• Firewall Module
 – Circuit Implementation
 – Automated Tool Flow
• Applications
 – Network Security
 – Virus Protection
 – Copyright Protection
 – SPAM Filter
• Conclusion
Introduction

- Internet firewalls and intrusion detection systems have become critical components of the Internet
- Most current hardware only process the packet headers
- Many viruses, digital media and certain denial of service attacks can only be detected by scanning the payload of a packet
- Regular expressions are powerful for searching

Motivation

- **Problem Description:**
 - Difficult to control flow of data in peer-to-peer networks
 - Movies
 - Music
 - Computer viruses
 - Denial of Service (DoS) attacks
 - SPAM
- **Solution:**
 - Scans packet payloads to detect digital signatures
 - Prevent unlawful distribution of digital content
 - Quarantine and eliminate viruses
 - Prevent DoS attacks and SPAM from spreading
 - Operate at the speed of the network backbone
 - Gigabits/second rates and faster
Regular Expression Scanning

Regular Expressions in FPGAs

- **A couple different approaches ...**
 - Nondeterministic Finite Automata (NFAs)
 - Sidhu, Prasanna; Franklin, Carver, Hutchings
 - Natural parallelism fits nicely into hardware
 - Easy construction
 - Small size

 - Deterministic Finite Automata (DFAs)
 - Theoretically large; but small in practice
 - One active state makes binary encoding possible
 - Compact state representation suitable for network
 - Context of a flow must be loaded / unloaded every packet.
Comparing DFA and NFA sizes

- Used SPAMAssassin’s rule database to compare the sizes of NFAs and DFAs (SPAMAssassin v2.60)

- Processed the 358 REs in the database with JLex and compared the outputs
 - NFA = 78 states
 - DFA = 24 states
 - Ratio of DFA:NFA =
 - 24 : 78 =
 - 0.3 : 1

Comparing DFA and NFA sizes

![Graph comparing DFA and NFA sizes]

- 66% of expressions
- 33% of expressions
Content Scanner
Circuit Implementation

Requirements for Content Scanner

- **Need the ability to...**
 - Scan every character of every packet’s payload
 - To find regular expressions
 - Actively drop packets
 - That match a given expression
 - Generate an alert message
 - To identify which expressions in a given set matched
 - Send an alert message to a log server
 - When a match is detected
 - Easily reconfigure the scanner
 - To search for a new set of expressions
Photograph of the FPX

- Xilinx Virtex 2000E
- Network interface device routes traffic to module and allows reprogramming over network

Infrastructure

- **Processing Module**
 - Processes Data passing through the module

- **Protocol Wrappers***
 - Segment and reassemble Internet packets
 - Compute packet headers, lengths, and checksums

- **Interfaces**
 - Read and write packets to network

*FPL '01
Increasing Throughput via Parallelism

- Processing packets at the full line rate
 - Problem:
 - Single scanner only processes 8 bits per clock cycle
 - Input rate is 32 bits per clock cycle
 - Solution:
 - Four parallel content scanners
Increased Throughput via Parallelism

Four Parallel Scanners

Dispatcher

Flow Control

Generating the Hardware

- **Read input specification**
 - Syntax:
 - `/ expression / property_id(id #) /`
 - Example
 - `/ Vi(R|r)u(S|s) / property_id(6) /`

- **Parse with JLex**
 - Create optimized DFA

- **Convert DFA to VHDL**
 - Create structural component to connect all DFAs

- **Synthesize and place and route**

- **Dynamically reprogram the FPGA on the FPX**
Extensible Networking Platform 21

Applied Research Laboratory -- Extensible Networking Test Environment

Fast Ethernet Switch w/Fiber uplink

Internet

Fast Ethernet Switch w/Fiber uplink

PC

PC

PC

PC

Internet User

Security Server

Internet User requests information from Internet

Content Scanner

Information passes through FPX and returns to user

Information returns from Internet through FPX

Information is processed in the FPX

Alert message is sent to security server for packets that contain targeted information

DBase

Targeted information from 128.292.153.197 is being received by a user at 192.168.295.21.

- The packet has a priority level of 4.0
- The packet contains the following data fields:
 - IP: Targeted

Network Security
SPAM Filter

INTERNET

- Mail arrives from Internet
- Mail is processed in the FPX
- Mail containing SPAM is blocked at FPX
- Alert message is sent to mail server to log event
- Valid mail arrives at Mail Server
- Mail Server

Results

- SPAM Filter
SPAM List

- **General SPAM**
 - "(A|a)(M|m)(A|a)(Z|z)(I|i)(N|n)(G|g)"
 - "CALL NOW"
 - "(L|l)imited (T|t)ime (O|o)ffer"

- **Save Money SPAM**
 - "(C|c)onsolidate"

- **Fast Money SPAM**
 - "MAKE MONEY FAST"
 - "(W|w)ork from home"

- **Chains and Forwards**
 - "Read this"
 - "FWD"

- **Jokes**
 - "(J|j)oke"
 - "(J|j)oke"
 - "walks into bar"

- **Work List**
 - "(H|h)omework"
 - "(M|m)achine (P|p)roblem"
 - "(C|c)(S|s)536"
 - "Lockwood"
 - "Washington University"

- **Personal List**
 - "(M|m)om"
 - "(D|d)ad"
 - "(C|c)all (H|h)ome"

- **Urgent**
 - "(U|u)(R|r)(G|g)(E|e)(N|n)(T|t)"
 - "Emergency"

Device Utilization – SPAM Filter

- **Quad Scanner:** $m=4; n=20$
- **Single Scanner:** $m=1; n=20$
- **Infrastructure**
Throughput

- **A scanner processes 8-bits per clock cycle**
 - **SPAM filter**
 - Single scanner
 - 8 bits \(\times \) 37 MHz = 296 Mbps
 - Quad scanner
 - 8 bits \(\times \) 37 MHz \(\times \) 4 scanners = 1.184 Gbps
 - **Simple RE circuit**
 - Single scanner
 - 8 bits \(\times \) 80 MHz = 640 Mbps
 - Quad scanner
 - 8 bits \(\times \) 80 MHz \(\times \) 4 scanners = 2.5 Gbps

Conclusion

- **Module has been implemented on the FPX**
 - That integrates into a firewall
 - Enables full processing of packet payloads
 - Module is capable of...
 - Passively reviews packets
 - Actively drops packets
 - Generates alert messages to notify of a match

- **Design Flow has been created**
 - Maintains strings in database table
 - Automatically generates bitfiles

- **Module has been tested**
 - Operates with real Internet traffic
 - Module Operates at speeds of 1.2 Gbps - 2.5 Gbps
 - On display for demo night
Current Work

- Optimize the circuit to achieve better speed
- Behavior on regular expression basis instead of chip
- Combine with TCP-Splitter* to process data on a stream-by-stream basis instead of on a packet-by-packet basis
 - requires ability to load/unload stream state of the DFAs

Acknowledgements

- Washington University
 - Applied Research Lab
 - Faculty
 - John Lockwood
 - Jon Turner
 - Graduate Students
 - David Taylor
 - Todd Sproull
 - Sarang Dharmapurikar
 - David Lim
 - James Moscola
 - David Schuehler
 - Chris Neely
 - Chris Zuver
 - Haoyu Song
 - Henry Fu (Now at Stanford)
 - Bharath Madhusudan
 - Undergraduate Students
 - Harvey Ku (at CMU)
 - Eliot Sinclair
 - Mike Attig
 - Doug Stirrut
 - Tucker Evans (Now at General Dynamics)
 - Mike Wrighton (Now at CalTech)
 - University Research Partners
 - Prabhu Kuttiyam (University of Kentucky)
 - Ken Calvert (University of Kentucky)
 - Matt Sanders (Georgia Tech)
 - Ron Srodawa (Oakland University)
 - Haiyan Qiao (NDSU)
 - William Perrizo (NDSU)
 - Kuo-Tung Kuo (University of Maryland)
 - Cary Colwell (Naval Postgraduate School)
 - John Gibson (Naval Postgraduate School)
 - Hualyu Liu (University of Texas at Austin)
 - Qing Tan (University of Toledo)
 - Sachin Shetty (University of Toledo)
 - Rajanikanth Batchu (Mississippi State)
 - Ravi Sankar (USF)
 - Simon Wong (UCLA)
 - Sven Shepstone (University of Cape Town, South Africa)
 - Visiting Faculty and Students
 - Edson Horta (Univ. de Sao Paulo, Brasil)
 - Florian Braun (University of Stuttgart)
 - Carlos Macian (University of Stuttgart)

*Hot Interconnects '02
More Information

- http://www.arl.wustl.edu/arl/projects/fpx/
- http://www.globalvelocity.info