1. (5 points) Draw a circuit that directly implements the logic function
 \((B + C')A + (A'B + D)C'\). Do not simplify the expression first. Use only simple gates.
2. (5 points) The simulation output shows selected signals from the processor introduced in section 1 of the course notes. The portions of the output corresponding to two different instructions are outlined. Identify the instructions that are being executed. Give the name of the instruction (e.g. direct store, branch-on-positive) and its complete numeric representation. Note that some parts of the simulation output have been blanked out.

0000 halt – halt execution
0001 negate – \(ACC := -ACC \)
1xxx immediate load – if sign bit of xxx is 0 then \(ACC := 0xxx \) else \(ACC := fxxx \)
2xxx direct load – \(ACC := M[0xxx] \)
3xxx indirect load – \(ACC := M[M[0xxx]] \)
4xxx direct store – \(M[0xxx] := ACC \)
5xxx indirect store – \(M[M[0xxx]] := ACC \)
6xxx branch – \(PC := 0xxx \)
7xxx branch if zero – if \(ACC = 0 \) then \(PC := 0xxx \)
8xxx branch if positive – if \(ACC > 0 \) then \(PC := 0xxx \)
9xxx branch if negative – if \(ACC < 0 \) then \(PC := 0xxx \)
axxx add – \(ACC := ACC + M[0xxx] \)