1. (4 points) What is the binary representation of the decimal value 216?

If you interpret the binary value from the first part as an eight bit signed value in 2s-complement, what is the equivalent decimal value?
2. (6 points) If our basic processor begins execution with the first instruction shown below, what value will be in the accumulator after the second instruction is executed? (The list of instructions is given below.)

<table>
<thead>
<tr>
<th>addr</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>03a7</td>
<td>lffe</td>
</tr>
<tr>
<td>03a8</td>
<td>a3a7</td>
</tr>
<tr>
<td>03a9</td>
<td>93d5</td>
</tr>
</tbody>
</table>

What value will be in the program counter after the third instruction is executed?

0000 halt – halt execution
0001 negate – \(ACC := -ACC \)
1xxx immediate load – if sign bit of xxx is 0 then \(ACC := 0xxx \) else \(ACC := fxxx \)
2xxx direct load – \(ACC := M[0xxx] \)
3xxx indirect load – \(ACC := M[M[0xxx]] \)
4xxx direct store – \(M[0xxx] := ACC \)
5xxx indirect store – \(M[M[0xxx]] := ACC \)
6xxx branch – \(PC := 0xxx \)
7xxx branch if zero – if \(ACC = 0 \) then \(PC := 0xxx \)
8xxx branch if positive – if \(ACC > 0 \) then \(PC := 0xxx \)
9xxx branch if negative – if \(ACC < 0 \) then \(PC := 0xxx \)
axxx add – \(ACC := ACC + M[0xxx] \)