1. (6 points) (6 points) Fill in the Karnaugh map below so that it corresponds to the function $F(A,B,C,D) = \Sigma m(2,3,5,6,12,13)$, $d(A,B,C,D) = \Sigma m(4,8,9,11,15)$. Derive a minimal product-of-sums expression for this function, taking full advantage of the don’t care conditions.

How many simple AND gates, OR gates and inverters are needed to implement your expression directly? How many transistors is this, assuming CMOS gates? How many four input LUTs are needed to implement the expression?
2. (4 points) A 1-to-8 demultiplexor has a data input D, eight data outputs $Q_0,...,Q_7$ and three control inputs C_2,C_1,C_0. Write a logic equation for Q_6 as a function of D,C_2,C_1 and C_0.

How many 4 input LUTs are needed to implement the complete demultiplexor?