1. (5 points). The diagram below shows a leftist heap that might be formed during the running of the round robin algorithm. Keys and ranks have been omitted. Nodes labeled with dashes (−) are dummy nodes introduced by lazy melds. For other nodes, the labels represent an edge in the graph (for example be denotes the edge {b, e}). Assume that the tree corresponding to this heap includes the vertices a, c, d, f, h, and j. Draw an X through all nodes that are considered “deleted” by the round robin algorithm. Suppose a findmin operation is done on this heap. Draw a closed curve around each of the subtrees that are returned by the resulting call to the purge method.
2. (5 points) In Edmond’s algorithm, suppose that vertices a, c, f, g, h, i and k form a blossom. Suppose that edges $\{a, f\}, \{c, h\}, \{i, k\}$, are in the matching. Which vertex is the base of the blossom?

Suppose that the base of the blossom has a parent in the tree. Is the edge to the parent in the matching or not?

Suppose $\{h, k\}$ is the bridge of the blossom and the parent of c in the tree is a. List all the even vertices in the blossom, at the moment just before the blossom was formed (suggestion: draw a picture of the blossom).

Suppose that after the blossom is formed, we process the edge $\{i, d\}$ where d is in a different tree, yielding an augmenting path. When the augmenting path is flipped, which of the matching edges in the blossom is removed from the matching.