Introduction to Advanced Data Structures and Algorithms

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Analysis of Algorithms

- Why analyze algorithms?
 - evaluate algorithm performance
 - compare different algorithms

- Analyze what about them?
 - running time, memory usage, solution quality
 - worst-case and “typical” case

- Computational complexity
 - understanding intrinsic difficulty
 - classifying problems according to difficulty
 - algorithms provide upper bound
 - to show problem is hard, must show that any algorithm to solve it requires at least a given amount of resources
 - transform problems to establish “equivalent” difficulty
Computational Problems

- Informally, a *computational problem* can be described in terms of
 - form of input provided to an algorithm for the problem
 - form of the output such an algorithm should produce
 - the relationship between input and output

SORTING

INPUT: A list of integers $A = (a_1, \ldots, a_n)$
OUTPUT: A list of integers $B = (b_1, \ldots, b_n)$ such that B
is a permutation of A and $b_1 \leq b_2 \leq \cdots \leq b_n$

MATCHING

INPUT: A graph $G = (V, E)$ and an integer k
OUTPUT: A set $M \subseteq E$ such that $|M| = k$ and such that no
vertex in V is incident to more than one edge of M
Random Access Machine

- Abstract computational model with
 - a fixed and finite program
 - an unbounded memory
 - a read-only input file
 - a write-only output file

- Each memory register can hold an arbitrary integer
- Each tape cell can hold a single symbol from a finite alphabet Σ

- Instruction set:
 - $x \leftarrow y$, $x \leftarrow y \{+,-,*,...,\} z$
 - goto label
 - if $y \{<, =, ...\} z$ goto label
 - $x \leftarrow$ input, output $\leftarrow y$

- Addressing modes:
 - x may be direct or indirect reference
 - y and z may be constants, direct or indirect references
Asymptotic Analysis

- Focus on growth rate of running times
 » simplifies analysis
 » yields results that are largely independent of details of computational model

- Let f, g be functions from the non-negative integers to the positive reals
 » say “f is $O(g)$” if there are positive constants c, n_0 such that $0 \leq f(n) \leq cg(n)$ for all $n > n_0$
 » say “f is $\Omega(g)$” if there are positive constants c, n_0 such that $0 \leq cg(n) \leq f(n)$ for all $n > n_0$
 » for example: $\log n$ is $O(n)$ and n^2 is $\Omega(n^2-n)$
Dose of Reality

- Classical analysis neglects some important factors
- Memory-latency gap
 - in real processors, access to main memory takes ≈100 ns
 - time enough for processor to execute hundreds of instructions
 - caches save recently-used results on-chip to avoid main memory accesses
 - relies on locality of reference observed in typical programs
 - programs using large linked data structures can exhibit poor locality of reference leading to poor cache performance
- Newer multi-threaded/multi-core processors require algorithms that can exploit parallelism
 - quad core and eight core processors with multiple threads per core now common, many more coming soon
Algorithmic Notation

- **Intervals.** An interval $[j..k]$ denotes sequence $j,...,k$
 $[j,k..m]$ denotes the sequence $j,k,j+2(k-j),...,m$
 example: $[1,3..7]$ denotes the sequence $1,3,5,7$

- **Lists.** A list $q=[x_1,...,x_n]$ is a sequence of elements; x_1
 is the head, x_n is the tail. Basic list operations:
 Access: If $q=[x_1,...,x_n]$, $q(i)=x_i$
 Sublist: $q[i..j]=[x_i,...,x_j]$
 Concatenation: If $r=[y_1,...,y_m]$, $q \& r=[x_1,...,x_n,y_1,...,y_m]$

- **Sets.** A set $s=\{x_1,...,x_n\}$ is unordered collection of
 distinct items; basic operations are union \cup,
 intersection \cap and difference $-$

- **Maps.** A map $f=\{[x_1,y_1],...,[x_n,y_n]\}$ is set of ordered
 pairs, no two having same first coordinate
 **domain(f)$=\{x_1,...,x_n\}$ and range(f)$=\{y_1,...,y_n\}$
 assignment $f(x):=y$ adds the pair $[x,y]$ to f
- **Assignment**
 \[x_1, \ldots, x_n := \text{expression} \]
 \[x_1, \ldots, x_n := \exp_1, \ldots, \exp_n \]
 \[x \leftrightarrow y \]

- **If statement**
 \[
 \begin{align*}
 \text{if} & \quad \text{condition}_1 \Rightarrow \text{statement list}_1 \\
 & \quad \ldots \\
 & \quad \text{condition}_n \Rightarrow \text{statement list}_n \\
 \text{fi}
 \end{align*}
 \]

- **Do statement**
 \[
 \begin{align*}
 \text{do} & \quad \text{condition}_1 \Rightarrow \text{statement list}_1 \\
 & \quad \ldots \\
 & \quad \text{condition}_n \Rightarrow \text{statement list}_n \\
 \text{od}
 \end{align*}
 \]
For statement
 for iterator ⇒ statement list rof

Subroutines
 procedure name(parameter list); statement list end
 type function name(parameter list); statement list end
 predicate name(param list); statement list end
 return or
 return expression

Example. Binary search

integer function search(list s, integer x, lo, hi);
 integer mid;
 if lo > hi ⇒ return 0 fi;
 mid := [(lo + hi)/2];
 if s(mid) = x ⇒ return mid
 | s(mid) < x ⇒ return search(s,x,mid+1,hi)
 | s(mid) > x ⇒ return search(s,x,lo,mid-1)
 fi
end;
Index-Based Data Structures

- Consider list in which list items are subset of \([1..n]\)
 - such a list can be implemented as an array of \textit{next} values
 - for item \(i\) not on list, let \(\text{next}[i]=-1\) for fast membership test
 - \([7,5,3,8,2]\)

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\text{next} & -1 & 0 & 8 & -1 & 3 & -1 & 5 & 2 & -1 & -1
\end{array}
\]

- \textit{ListSet} defined on list items in \([1..n]\)
 - each item belongs to exactly one list (possibly singleton)
 - implement as circular lists in shared arrays \textit{next} and \textit{prev}

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\text{next} & 6 & 7 & 1 & 4 & 12 & 3 & 2 & 11 & 8 & 5 & 9 & 10 \\
\text{prev} & 3 & 7 & 6 & 4 & 10 & 1 & 2 & 11 & 8 & 12 & 9 & 5
\end{array}
\]

- Index values can be used as common “handle” in multiple data structures
Algorithmic Representations of Graphs

- Basic graph provides methods for traversing adjacency lists, adding edges and IO
 - adjacency lists based on endpoints 2e, 2e+1 for edge e
- Variants add additional data and methods

C++ class hierarchy for graph types
- Graph
- WGraph
- Digraph
- Wdigraph
- Fiograph
- Wfiograph
Exercises

1. For each of the following problems, give a precise statement of the problem in the style used on page 3.

 Testing if a given string is a palindrome (reads the same way forwards and backwards).

 Input: Character string \(s = a_1 a_2 \ldots a_n \)
 Output: True if \(a_i = a_{n+1-i} \), for \(1 \leq i \leq n \), else False.

 Find a Hamiltonian cycle (a simple cycle that includes every vertex) in an undirected graph.

 Input: An undirected graph \(G = (V, E) \) with \(n \) vertices.
 Output: A list of vertices \(u_1 u_2 \ldots u_n \) where \(u_i \in V \) for all \(i \), \(u_i \neq u_j \) for all \(i \neq j \) and \((u_i, u_{i+1}) \in E \) for \(1 \leq i \leq n \) and \((u_n, u_1) \in E \).

2. For the directed tree below, list the vertices in the order they would be visited by a pre-order traversal and a post-order traversal.

 Preorder: a g d c b h f e
 Postorder: d c g b f e h a

3. In the directed graph below, list the vertices in the order they would be visited by a depth-first search and by a breadth-first search, starting from vertex \(a \). Assume that the adjacency lists are sorted by their "far" endpoints.

 Depth-first: a b c g d f e h
 Breadth-first: a b g c f d e h
4. Complete the missing entries in the following data structure representing an undirected graph.

```
<table>
<thead>
<tr>
<th>edges</th>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>c</td>
<td>e</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>5</td>
<td>d</td>
<td>c</td>
</tr>
<tr>
<td>6</td>
<td>a</td>
<td>d</td>
</tr>
</tbody>
</table>

adjLists

<table>
<thead>
<tr>
<th>next</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

first_endpoint

<table>
<thead>
<tr>
<th>first_endp</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Draw a picture of the graph.