Applications of Matching

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Packet Switch Scheduling

- Internet routers often use “crossbar switches” to transfer packets from inputs to outputs
 - an input can send one packet at a time, and an output can receive one
 - packets transferred in one time step define matching in bipartite graph
 - packets transferred over several time steps define an edge coloring

- To find coloring using fewest colors
 - repeatedly find matching that includes an edge at vertices of maximum degree
Matching Max Degree Vertices

- Find path to extend matching by constructing a single tree rooted at a max degree vertex
 - if selected edge connects to unmatched vertex, we have an augmenting path and root becomes matched
 - if selected edge connects to matched vertex, extend tree; if new leaf has <max-degree, swap edges on path to root
 - this does not increase size of matching, but does match root
Alternate Approach

- Construct flow graph for matching as before
 - augment source/sink edges for max-degree vertices with minimum flow requirement of 1

- To find flow that satisfies min flow requirement
 - find max flow in modified graph
 - add sink/source edge of infinite capacity
 - add new source/sink vertices s', t'
 - replace each lower-bound edge (u,v) with ordinary edges (s',v) and (u,t')

- Map back to original graph and augment, while retaining min flows
Observations

- Method using min flows can be used to construct matchings that require specific vertices
 - not just max-degree vertices
- Algorithm applies more generally
 - can be used with arbitrary graphs having arbitrary min flow requirements
 - useful in various application settings
- Not all sets of min flow requirements are feasible
 - given infeasible set of requirements, first phase of algorithm terminates without saturating s' edges
- Other edge coloring methods
 - divide-and-conquer algorithm based on Euler partitions achieves running time of $O(m \log \Delta)$
Traveling Salesman Problem

- Given a complete graph with edge costs, $c(u,v)$
 - find min length “tour” that visits every vertex once

- Variants
 - TSP with triangle inequality – $c(u,w) \leq c(u,v) + c(v,w)$
 - Euclidean TSP: vertices are points in a plane, there’s an edge between every pair with length equal to distance between the points
 - asymmetric TSP – directed graph with $c(u,v) \neq c(v,u)$

- TSP is NP-complete, but can be approximated
 - worst-case approx bound of 3/2 with triangle inequality
 - no bound for asymmetric case, but can get near-optimal solutions with high probability for random instances
Approximating TSP Using MST

- If we discard an edge from a TSP solution, we get a spanning tree, so
 \[\text{MST}(G) \leq \text{TSP}(G) \]

- Consider a depth-first traversal of an MST \(T \), from some arbitrary root
 - list each edge as we go “down” and again as we go back “up”
 - cost of list is \(2 \text{MST}(G) \)
 - select sub-list by replacing repeat edges with “shortcuts”
 - this yields valid TSP tour and if edge lengths satisfy triangle inequality its total length is at most \(2 \text{MST}(G) \leq 2 \text{TSP}(G) \)
Improving Approximation

- Can view previous procedure as constructing Eulerian graph
 - where all vertices have even degree
 - any Eulerian graph tour can be converted to a TSP tour using shortcuts
- Finding a better Eulerian graph by connecting odd-degree vertices
 - by finding a perfect matching in graph induced by odd-degree vertices
 - any graph has an even number of these
 - min weight perfect matching $\leq \frac{TSP(G)}{2}$
 - since alternate edges of “shortcut TSP tour” yield two matchings
 - so tour from MST+matching $\leq 1.5 TSP(G)$
Approximating Asymmetric TSP

- TSP tour is a single cycle spanning all vertices
 - can view as perfect matching on bipartite graph
- Any perfect matching defines collection of cycles in original graph
 - so min weight perfect matching provides lower bound on cost of TSP tour
 - for random edge weights, bound is very tight with high probability
Patching Algorithm for TSP

- Construct weighted bipartite graph and find min cost perfect matching
 - using min-cost flow method with costs=weights
 - let C be set of cycles defined by matching
- While $|C| > 1$
 - select two cycles and "patch them" using edge pair that produces smallest increase in cost
 - $(c(u,v)+c(x,y)) - (c(u,v)+c(x,y))$
- For random edge weights
 - initial C has small number of cycles
 - with high probability
 - so small number of patching operations
 - and small increase in cost, yielding near-optimal TSP tour
Applications of TSP

- Vehicle routing
 - selecting route for school bus or mail delivery truck
 - sub-problem of more general “fleet scheduling”

- Job sequencing
 - given set of jobs to be carried out on a complex machine tool, where each job requires some setup
 - setup time for one job depends on previous job
 - use TSP tour to select ordering of jobs to minimize setup

- Data clustering
 - let $A=[a_{ij}]$ were a_{ij} represents the strength of a relationship between two properties
 - permute rows and columns to form “high value blocks”
 - use TSP to find best permutations