Maximum Weight Matchings in General Graphs – Part 1

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Maximum Weight Augmentation

- Given graph $G=(V,E)$ and matching M, define weight of path p to be total weight of its free edges minus total weight of its matched edges.

- **Theorem 9.2.** Let M be a matching of maximum weight among matchings of size $|M|$, let p be an augmenting path for M of maximum weight, and let M' be the matching formed by augmenting M using p. Then M' is of maximum weight among matchings of size $|M|+1$.

 Proof. Let M'' be a matching of maximum weight among matchings of size $|M|+1$. Let N be the set of edges in M or M'' but not both.
Define the weight of a path or cycle in N with respect to M. Any cycle of even length path in N must have weight ≤ 0, since otherwise we could increase the weight of M without changing its size, by exchanging the edges on the cycle or path.

Since N contains exactly one more edge in M' than in M, we can pair all but one of the odd-length paths so that each pair has an equal number of edges in M and in M'. Each such pair of paths must have total weight ≤ 0 by the same reasoning as before.

Augmenting M using the remaining path gives a matching of size $|M| + 1$ with same weight as M'. This must be a maximum weight augmenting path for M since if there were an augmenting path with larger weight, we could construct a matching of size $|M| + 1$ with larger weight than M'. ■
Theorem 9.2 provides a basis for a weighted matching algorithm

» Finding max weight augmenting paths directly is difficult, especially for general graphs
» Can be done using LP duality
 • Dual variables can be viewed as vertex/blossom labels
 • Label values of edge endpoints are related to edge weights
Matching and Linear Programming

- Matchings defined by selection variables $X=\{x_e\}$
 - $x_e=1$ if e is an edge in the matching
- Objective is to maximize weight(X)=$\sum_e x_e w(e)$
- Constraints:
 - for each vertex u with incident edges $E(u)$, $\sum_{e\in E(u)} x_e \leq 1$
 - for each edge e, $x_e=0$ or $x_e=1$
- The constraints on the x_es make this an integer linear programming problem
 - Edmonds showed that for bipartite graphs, we can replace these constraints with $x_e \leq 1$
 - this ordinary LP has same optimal solutions as original ILP
 - we’ll use duality to obtain a more efficient algorithm
Dual Version of Matching LP

- First, re-state primal version in matrix form
 - define the \(n \times m \) edge incidence matrix \(G = [g_{u,e}] \) where \(g_{u,e} = 1 \) if \(u \) is an endpoint of \(e \), else \(g_{u,e} = 0 \)
 - let \(W = [w_e] \) be column vector of edge weights and let \(X = [x_e] \) be column vector of selection variables
 - primal problem becomes
 - maximize weight(\(X \)) = \(W^T X \) subject to \(GX \leq [1] \)

- Dual version uses variables \(Z = [z_u] \)
 - minimize cost(\(Z \)) = \([1]^T Z \) subject to \(G^T Z \geq W \)
 - equivalently, minimize \(\sum_u z_u \) subject to \(z_u \geq 0 \) and for all edges \(e \), \(z_e \geq w_e \) where \(z_e = z_u + z_v \) for \(e = \{u,v\} \)
 - complementary slackness implies that if \(X^* \) and \(Z^* \) are optimal, \(z_e = w_e \) for matching edges \(e \) and \(z_u = 0 \) if \(u \) is free
Max Wt. Matchings & Vertex Labeling

Theorem. Let $G=(V,E)$ be a bipartite graph with edge weights $w(e)$, let M be a matching in G and let each vertex u have a non-negative label z_u. If

1. $z_e \geq w(e)$ for $e \in E$ ($z_e = z_u + z_v$)
2. $z_e = w(e)$ for $e \in M$
3. $z_u = 0$ if u is free

then M is a maximum weight matching.

Proof. Let M and z satisfy the conditions in the theorem and let N be any other matching.

$$
\Sigma_{e \in N} w(e) = \Sigma_{e \in N} z_e \leq \Sigma_z z_u = \Sigma_{e \in M} z_e = \Sigma_{e \in M} w(e)
$$

Edges with $w(e) = z_e$ are called equality edges

- augmenting path using equality edges has max weight
Bipartite Matching Using Vertex Labels

- Initialization
 - \(M = \emptyset \) and \(z_u = (\text{max edge weight})/2 \) for all \(u \)
 - this satisfies conditions (1) and (2) in theorem
- At each step, search for augmenting paths using only equality edges (by building trees, as before)
 - halt if condition (3) becomes true
 - if search fails to find an augmenting path, modify labeling
 - this makes condition (3) true or creates more equality edges
 - in latter case, continue search for augmenting path using newly created equality edges
 - after finding a path, augment and reset even/odd status, but retain \(z \) values
 - note, augmentation maintains truth of (1), (2)
Adjusting Labels

Whenever the search runs out of eligible edges
 » if all free vertices have zero labels, terminate
 » let $\delta_1 = \min \{ z_u | u \text{ is even} \}$
 $\delta_2 = \min \{ z_e - w(e) | e = \{ u, v \}, u \text{ even}, v \text{ unreached} \}
 \delta_3 = \min \{ (z_e - w(e))/2 | e = \{ u, v \}, \text{ both even} \}
 (\delta_2, \delta_3 \text{ are undefined if no suitable edge})
 \delta = \min \{ \delta_1, \delta_2, \delta_3 \} - \text{ignore } \delta_2, \delta_3, \text{ when undefined}
 » subtract δ from labels for even vertices, add δ to labels for odd vertices
 • note: this maintains truth of (1), (2)
 » if $\delta = \delta_1$, this makes condition (3) true and algorithm halts
 • since labels start with same value and free vertices experience same sequence of changes
 » if $\delta = \delta_2$ or δ_3, search can resume using new equality edges.
Implementation Details

- Use heaps to compute δ_l values efficiently
 - h_{1e} and h_{1o} store the even and odd vertices respectively, with z_u as the key for vertex u
 - h_2, h_3 store edges, with keys $z_e \cdot w(e)$
 - h_2 has edges with one even endpoint and one unreached
 - h_3 has edges with both endpoints even
 - When a vertex u becomes even, add its edges to h_2 or h_3

- To enable fast updating of labels use heap with fast `addtokeys(x)` operation
 - Adds x to keys of all items in a heap
 - d-heap can be extended to do this in constant time

- Eligible equality edges appear at top of h_2 and h_3
 - Can be selected directly from the heaps
Running Time Analysis

- Number of augmentations is at most $n/2$
 - at end of search, update vertex labels using h_{1e}, h_{1o}
 - also, clear heaps in preparation for next search
- Each step that extends a tree adds edges to heaps and removes edges from heaps
 - during one augmenting search, each edge added to a heap ≤ 2 times, removed ≤ 2 times
 - so, $O(mn \log n)$ time for these heap operations
- All but the last label adjustment adds at least one equality edge and does not eliminate any
 - so total # of label adjustments is $O(m)$ and since these require only findmin and addtokeys, we get $O(m)$ time
D-Heap with Addtokeys Operation

- Operation \(\text{addtokeys}(x) \) adds \(x \) to keys of all items in a heap
 - add internal variable \(\Delta \) to heap implementation
 - every \(\text{addtokeys}(x) \) operation increases \(\Delta \) by \(x \)
 - let \(\Delta(t) \) be value of \(\Delta \) at time \(t \), then
 - from time \(t_1 \) to time \(t_2 \), \(\text{key}(j) \) increases by \(\Delta(t_2) - \Delta(t_1) \)

- When inserting item \(j \) with key \(k \) into heap, use \(k - \Delta \) as the stored value, in place of \(k \)
 - preserves relative values of all items in heap

- To obtain the “true key” for item \(j \), add the current value of \(\Delta \) to the stored key value