Maximum Weight Matchings in General Graphs – part 2

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Weighted Matchings in General Graphs

- Define LP with same optimal solutions as ILP
 - maximize \(\text{weight}(X) = \sum_e x_e w(e) \) subject to
 - \(\sum_{e \in E(u)} x_e \leq 1 \) for all \(u \) with edges \(E(u) \)
 - \(\sum_{e \in B} x_e \leq (|B| - 1)/2 \) for every non-trivial odd subset \(B \subseteq V \)

- In matrix form
 - define \(G = [g_{B,e}] \) with row for every odd subset \(B \subseteq V \),
 - \(g_{B,e} = 1 \) if \(e \subseteq B \) or \(B \subseteq e \), else \(g_{B,e} = 0 \)
 - let \(W = [w(e)] \) be column vector of edge weights and
 - let \(X = [x_e] \) be column vector containing the LP variables
 - let \(K = [k_B] \) be column vector with entry per odd subset \(B \)
 - \(k_B = \max\{1, (|B| - 1)/2\} \)
 - primal problem becomes
 - maximize \(\text{weight}(X) = W^T X \) subject to \(GX \leq K \)
Dual Version

- Dual version uses variables $Z=[z_B]$
 - minimize $\text{cost}(Z) = K^T Z$ subject to and $G^T Z \geq W$
 - equivalently, minimize $\Sigma_B k_b z_B$ subject to $z_e \geq w(e)$ for all edges e
 - $z_e = \Sigma_B z_B$ – sum is over odd subsets B where $e \subseteq B$ or $B \subseteq e$

- Complementary slackness implies that if X and Z are optimal solutions
 - $(G^T Z - W)^T X = [0]$ and $(K - GX)^T Z = [0]$
 - the first condition says that for each edge $e \in M$, $z_e = w(e)$
 - the second says
 - for every free vertex u, $z_u = 0$ and
 - for every non-trivial odd subset B with $z_B \neq 0$, the number of matching edges in B is k_B
Theorem. Let $G=(V,E)$ be a graph with edge weights $w(u,v)$, let M be a matching in G, let each odd subset B have a non-negative label z_B. For an edge e, let $z_e = \sum_B z_B$ where sum is over odd subsets B where $e \subseteq B$ or $B \subseteq e$. If

1. $z_e \geq w(e)$ for all $e \subseteq E$
2. $z_e = w(e)$ for all $e \subseteq M$
3. $z_B = 0$ if B is a free vertex or the number of matching edges in B is $\leq (|B|-1)/2$

then M is a maximum weight matching.

Proof. Assume conditions (1) to (3) hold with respect to some matching M, let N be any other matching.
\[\sum_{e \in E} w(e) \leq \sum_{e \in E} z_e \]
\[= \sum_{(u,v) \in E} (z_u + z_v) + \sum_{e \in E} \left(z_B \left(\frac{\# \text{ of edges in } N \text{ with both endpoints in } B}{1} \right) \right) \]
\[\leq \sum_{e \in E} z_u + \sum_{B \subseteq E} z_B \left(\frac{|B| - 1}{2} \right) \]
\[= \sum_{(u,v) \in M} (z_u + z_v) + \sum_{b \in B} z_B \left(\frac{\# \text{ of edges in } M \text{ with both endpoints in } B}{1} \right) \]
\[= \sum_{e \in M} z_e = \sum_{e \in M} w(e) \]

Hence, \(M \) is a maximum weight matching. ■

- *Equality edges* have \(z_e = w(e) \)
 - can find max weight augmenting paths using equality edges alone
Equality Edges Yield Max Weight

If M and z satisfy conditions (1) and (2), all free vertices have same label and only blossoms B have $z_B > 0$, augmenting paths using equality edges are max weight paths.

Weight of augmenting path:

$w(a,b) + w(c,d) + w(e,g) + w(f,h)$

- $(w(b,c) + w(d,e) + w(f,g))$

$\leq (z_d + z_B) + (z_c + z_d + z_B) + (z_a + z_g + z_B) + (z_f + z_B)$

- $((z_d + z_c) + (z_d + z_B) + (z_f + z_g + z_B))$

$= z_a + z_h$

If all equality edges, then path weight equals $z_a + z_h$

If all free vertices have same label, any such path is max weight augmenting path.
General Matching Using Labeling

- Algorithm maintains variables z_B only for vertices and blossoms B; others are implicitly 0
 - note, this means that condition (3) in theorem holds automatically if B is not a free vertex
- Initialization
 - $M = \{\}$, $z_v = (1/2) \max_e w(e)$
 - note: this satisfies conditions (1) and (2)
- Search for augmenting paths using equality edges
 - if (3) becomes true, algorithm halts
 - whenever search “stalls”, modify the labels
 - when augmenting path found, augment matching and make unexpanded blossoms unreached
 - expand only those blossoms with $z_B = 0$
Augmenting Without Expanding

- Blossoms B with $z_B > 0$ are retained following augmentation, along with their labels
 - necessary to maintain condition (3)
- Means blossoms may be unreached, odd or even
View each vertex as belonging to some (possibly trivial) blossom in the current shrunken graph
 » maintain variable z_B for all blossoms B, including those contained in other blossoms
 • $z_B=0$ for each new blossom; blossom expanded only if $z_B=0$
 • z_B values are changed only for outer-most blossoms
 » for each vertex u, let B_u denote the outermost blossom containing u in the current graph
 • state of u (odd, even, unmatched) is inherited from B_u
 • let $\text{mate}(B_u)$ be outer blossom at other end of matching edge incident to B_u
 » for each blossom B, maintain an edge $\text{entry}(B)$ which is the edge to the parent blossom of B in tree containing B

Note: for any matched edge not in a blossom
 » either both endpoints are unreached, or one is even, while the other is odd
Adjusting Labels

Whenever the search runs out of eligible edges, we select a value δ and adjust labels

- for vertices u
 - subtract δ from z_u if u even, add δ if u odd
- for outer-most blossoms B
 - add 2δ to z_e if B even, subtract 2δ if B odd

Observations

- for unreached, blossom or tree edges e, z_e doesn’t change
 - for e contained in a blossom, change to labels for edge endpoints are balanced by change for blossom
 - for e outside any blossom, z_e is sum of endpoint labels and either the changes balance, or neither changes
- for remaining edges, take care to avoid violations of (1)
Choosing δ

- Select δ as follows
 - let $\delta_1 = \min \{ z_u | u \text{ is even} \}$
 - $\delta_2 = \min \{ z_e - w(e) | e = \{u, v\}, u \text{ even}, v \text{ un reached} \}$
 - $\delta_3 = \min \{ (z_e - w(e))/2 | e = \{u, v\}, u, v \text{ even and not in same blossom} \}$
 - $\delta_4 = \min \{ z_B/2 | B \text{ is a top-level odd blossom} \}$
 - $\delta = \min \{ \delta_1, \delta_2, \delta_3, \delta_4 \}$

- Observations
 - this choice ensures that labels remain non-negative
 - label change causes one or more of the following to occur
 - algorithm terminates immediately (if $\delta = \delta_1$)
 - one or more equality edges are created (if $\delta = \delta_2$ or δ_3)
 - for at least one odd blossom B, z_B becomes zero (if $\delta = \delta_4$); this allows B to be expanded
Expanding Odd Blossoms

- When label adjustment makes $z_B = 0$ for an odd blossom B, it is expanded
 - for sub-blossoms on path from entry(B) to sub-blossom at base of B
 - assign new odd/even status and update entry edge
 - other sub-blossoms become unreached, entry undefined

- Implies that a vertex can alternate between odd, unreached many times during one search
 - complicates required data structures
Putting It Together

- **Initialization**
 - $M = \{\}, z_u = (1/2) \max_e w(e)$

- **Repeat the following step until $z_u = 0$ for all free u**
 - if there is an equality edge $\{u, v\}$ with u even, v unreached
 - expand tree containing u to include B_v and $\text{mate}(B_v)$, setting odd/even status and entry edge
 - if there is an equality edge with $\{u, v\}$ with u, v even
 - if u, v are in same tree, form new even blossom, set entry
 - if u, v are in different trees, augment matching and make blossoms on augmenting path unreached, entry undefined
 - if neither of the previous cases apply, adjust labels
 - if this makes $z_B = 0$ for some odd blossom B, expand B and update status of sub-blossoms
Running Time Analysis

- During one augmenting path search
 » $\leq n/2$ steps that extend the collection of trees
 • add edges at new even vertices to set of eligible edges
 » at most $\leq n/2$ steps form new blossoms
 • since new blossoms are always even and are not expanded
 » no edge can become an equality edge more than once
 • so, # of label adjustments that add equality edges is $\leq m$
 » steps that expand odd blossoms
 • $\leq n/2$ since blossoms that become odd were originally formed before current search

- So, $O(m)$ steps per search, $O(mn)$ altogether
 » with no special data structures takes $O(mn^2)$ time
 » with appropriate data structures can cut to $O(mn \log n)$
About Data Structures

- Use heaps with `addtokeys` as in bipartite case
- Blossom structure forest
 - contains a node for every original vertex, blossom and sub-blossom in the current graph
 - parent of \(x \) is inner-most blossom that contains \(x \)
 - trees implemented using doubly-linked circular lists of siblings, plus child pointer
- Split-join sets data structure to find \(B_u \), given \(u \)
 - ordered base set with `join`, `split` and `find` operations
 - can be implemented using binary search trees
- Group heap
 - divides heap into groups that can be **active** or **inactive**
 - `addtokeys` affects **active** groups