Minimum Spanning Trees and d-Heaps

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Minimum Spanning Trees

- A spanning tree of an undirected graph $G=(V,E)$ is a tree $T=(V,E')$, for which $E' \subseteq E$
- In a graph in which edges have costs the minimum spanning tree problem is to find a spanning tree $T=(V,E')$ for which $\sum_{e \in E'} \text{cost}(e)$ is as small as possible
- Variety of direct applications; often appears as a sub-problem in other optimization problems
The Greedy Method

- A cut in $G=(V,E)$ is a division of V into two parts X, X'
 - an edge crosses cut if one endpoint is in X and other is in X'
- The greedy method for solving the minimum spanning tree problem is a general algorithmic pattern
 - at each step it colors an edge either blue (accepted) or red (rejected); when all edges are colored, the blue edges form a minimum spanning tree
 - coloring rules
 - Blue rule. Select a cut with no blue edges, but at least one uncolored edge; select a minimum cost uncolored edges crossing the cut and color it blue
 - Red rule. Select a simple cycle with no red edges and at least one uncolored edge; select a maximum cost uncolored edge on the cycle and color it red
Correctness of Greedy Method

- Greedy method maintains color invariant
 - there is an MST containing all the blue edges and no red ones

- Theorem 6.1 (Tarjan). Greedy method colors all edges of a connected graph and maintains color invariant

Proof. Suppose invariant is true before a “blue step”
- let \(e = \{x,y\} \) be selected edge, let \(T = (V,F) \) be an MST containing all blue edges (and no red ones) before the step
- if \(e \in F \), \(T \) contains all blue edges (and no red ones) after the step
- if \(e \notin F \), there is some other edge \(e' \) on simple path from \(x \) to \(y \) in \(T \) that is also in the cut selected by the blue rule (\(e' \) is not blue)
 - \(T' = (V,F \cup \{e\} - \{e'\}) \) is a spanning tree
 - since \(e' \) is not blue and \(cost(e) \leq cost(e') \), \(T' \) is an MST and \(T' \) contains all the blue edges (and no red ones) after the step
Suppose invariant is true before a “red step”

- let $e = \{x, y\}$ be selected edge and let $T = (V, F)$ be an MST that contains no red edges (and all blue edges) before the step
- if $e \notin F$ then T contains no red edges (and all blue) after step
- if $e \in F$, then removing e from T splits T into subtrees T_1 and T_2
 - there is some edge e' that is not in T, on the cycle selected by the red rule that joins a vertex in T_1 to a vertex in T_2 (e' is not red)
 - $T' = (V, F \cup \{e'\} - \{e\})$ is a spanning tree.
 - Since $\text{cost}(e) \geq \text{cost}(e')$, T' is an MST. T' contains no red edges (and all blue) after the step

To see that all edges are colored, suppose that at some point $e = \{u, v\}$ remains uncolored.

- if u and v are connected by a blue path then that path plus e forms a cycle that the red rule can be applied to
- if u and v are not connected by a blue path, then there is a cut crossed by e that the blue rule can be applied to
Prim’s Algorithm

- Build single blue tree, from an arbitrary starting vertex by repeating following step \(n-1 \) times
 - select a minimum cost edge incident to the blue tree containing the starting vertex and color it blue
- The algorithm can also be expressed as follows.

```plaintext
procedure minspantree(graph G, set Tedges);
    vertex w,u,v; set S, Tvertices;
    Tvertices := \{1\}; Tedges := \{\}; S:=neighbors(1);
    do S ≠{} ⇒
            select min cost edge \{w,u\} from \( w \in Tvertices \) to \( u \in S \)
            Tvertices:=Tvertices∪\{u\}; Tedges:=Tedges∪\{w,u\};
            S := S – \{u\};
            for \( \{u,v\} \in edges(u) \) ⇒ if \( v \notin Tvertices \) ⇒ S := S ∪ \{v\} fi rof;
    od; // edges not added to tree_edges are implicitly colored red
end;
```

need fast method to select min cost edge
The Heap Data Structure

- A *heap* is a data structure consisting of a collection of items, each having a key; the basic operations are:
 - `insert(i, k, h)` – add item i to heap h using k as the key value
 - `deleteMin(h)` – delete and return a minimum key item in h
 - `changeKey(i, k, h)` – change the key of item i in heap h to k
 - `key(i, h)` – return the key value for item i

- The d-heap is one implementation of the heap data structure that has an integer parameter d
 - running time of $O(\log_d n)$ for `insert` and for `changeKey` operations that decrease the key value
 - running time of $O(d \log_d n)$ for `deleteMin` and for `changeKey` operations that increase the key value
 - can choose value of d to optimize algorithm performance
Prim’s Algorithm Using a Heap

procedure minspantree(graph G, set Tedges);
 vertex u,v; set tree_vertices;
 heap S; mapping cheap: vertex → edge;
 Tvertices := {1}; tree_edges := {};
 for \{v\} ∈ edges(1) ⇒ insert(v, cost(1, v), S); cheap(v) := \{1, v\} rof;
 do S ≠ {} ⇒
 u := deletemin(S);
 Tvertices := Tvertices \cup \{u\}; Tedges := Tedges \cup \{cheap(u)\};
 for \{u,v\} ∈ edges(u) ⇒
 if \(v \in S \land \text{cost}(u,v) < \text{key}(v) \) ⇒
 changekey(v, cost(u, v), S); cheap(v) := \{u, v\};
 fi;
 od;
 od:
end;

Note that heap stores vertices, not edges

every edge examined twice

every changekey reduces key value

each vertex inserted once
Analysis of Prim’s Algorithm

- Assume that Tvertices is implemented as a bit vector and Tedges as a list
- Non-heap operations within main do-loop but outside for-loop use constant time per iteration
- The do-loop is executed exactly \(n \) times
- The for-loop is executed \(2m \) times
- Heap operation counts
 - at most \(n \) deletemins, \(n \) inserts, \(m \) changekeys
 - changekey operations all decrease the key value
- Choosing \(d = \lfloor 2 + m/n \rfloor \) gives \(O\left(m \frac{\log n}{\log(2 + m/n)} \right) \)
// Find min spanning tree of graf and return it in mst
void prim(Wgraph& graf, Wgraph& mst) {
 vertex u,v; edge e;
 edge * cheap = new edge[graf.n()]+1];
 Dheap nodeHeap(graf.n(),2+graf.m())/graf.n());
 for (e = graf.firstAt(1); e != 0; e = graf.nextAt(1,e)) {
 u = graf.mate(1,e); nodeHeap.insert(u,graf.weight(e));
 cheap[u] = e;
 }
 while (!nodeHeap.empty()) {
 u = nodeHeap.deleteMin();
 e = mst.join(graf.left(cheap[u]),graf.right(cheap[u]));
 mst.setWeight(e,graf.weight(cheap[u]));
 for (e = graf.firstAt(u); e != 0; e = graf.nextAt(u,e)) {
 v = graf.mate(u,e);
 if (nodeHeap.member(v) && graf.weight(e) < nodeHeap.key(v)) {
 nodeHeap.changekey(v, graf.weight(e)); cheap[v] = e;
 } else if (!nodeHeap.member(v) && mst.firstAt(v) == 0) {
 nodeHeap.insert(v, graf.w(e)); cheap[v] = e;
 }
 }
 }
 delete [] cheap;
}
d-Heaps

- Heaps can be implemented efficiently, using *heap-ordered* tree
 - each tree node contains one *item* with a real-valued *key*
 - key of each node \geq key of its parent

- A *d*-heap is *heap-shaped*, heap-ordered *d*-ary tree
 - let T be an infinite *d*-ary tree, with vertices numbered in breadth-first order
 - a subtree of T is *heap-shaped* if its vertices have consecutive numbers $1, 2, \ldots, n$

- The depth of a *d*-heap with n vertices is $\leq \lfloor \log_d n \rfloor$
Implementing d-Heaps as Arrays

- D-heap can be stored in an array in breadth-first order
 - allows indices for parents and children to be calculated directly, eliminating the need for pointers

- If i is index of item x, then $\lceil (i-1)/d \rceil$ is index of $p(x)$;
 - indices of children of x are in range $[d(i-1)+2..di+1]$

- When key of item is decreased, restore heap-order, by repeatedly swapping the item with its parent
 - similarly, for increasing an item’s key
d-Heap Operations

item function findmin(heap h);
 return if h={} ⇒ null | h ≠ {} ⇒ h(1) fi;
end;

procedure siftup(item i, integer x, modifies heap h);
 integer p;
 p := ⌈(x-1)/d⌉;
 do p ≠ 0 and key(h(p)) > key(i) ⇒
 h(x) := h(p); x := p; p := ⌈(p-1)/d⌉ ;
 od;
 h(x) := i;
end;

procedure insert(item i; modifies heap h);
 siftup(i, |h| + 1, h);
end;
procedure siftdown(item i, integer x, modifies heap h);
 integer c;
 c := minchild(x,h);
 do c ≠ 0 and key(h(c)) < key(i) ⇒
 h(x) := h(c); x := c; c := minchild(x,h);
 od;
 h(x) := i;
end;

integer function minchild(integer x, heap h);
 integer i, minc;
 minc := d(x-1) + 2;
 if minc > |h| ⇒ return 0 fi;
 i := minc + 1;
 do i ≤ min { |h|, dx+1 } ⇒
 if key(h(i)) < key(h(minc)) ⇒ minc := i fi;
 i := i + 1;
 od;
 return minc;
end;
procedure delete(item i, modifies heap h):
 item j; j := h(|h|); h(|h|) := null;
 if i ≠ j and key(j) < key(i) ⇒ siftup(j, h⁻¹(i), h);
 | i ≠ j and key(j) > key(i) ⇒ siftdown(j, h⁻¹(i), h);
 fi;
end;

item function deletemin(modifies heap h):
 item i;
 if h = {} ⇒ return null; fi;
 i := h(1); delete(h(1), h);
 return i;
end;

procedure changekey(item i, keytype k, modified heap h):
 item ki; ki := key(i); key(i) := k;
 if k < ki ⇒ siftup(i, h⁻¹(i), h);
 | k > ki ⇒ siftdown(j, h⁻¹(i), h);
 fi;
end;
Analysis of d-Heap Operations

heap function makeheap(set of item s);
 integer j, heap h;
 $h := \emptyset$;
 for $k \in s$ do $j := |h|+1$; $h(j) = i$; end;
 $j = [(|h|-1)/d]$;
 do $j > 0$ do siftdown($h(j), h$); $j = j-1$; od;
 return h;
end.

- Each execution of siftup (and hence insert) takes $O(\log_d n)$ time, while each execution of siftdown takes $O(d \log_d n)$ time.
- Time for changekey depends on whether keys increase or decrease:
 - if keys always decrease, can make changekey faster using a large d.
- The running time for makeheap is $O(f)$ where
 \[
 f(n) = \frac{n}{d} + \frac{n}{d^2} 2d + \frac{n}{d^3} 3d + \cdots
 \]
 which is $O(n)$.
1. The figure below shows a 3-heap.

Show the heap contents after inserting new items i, j, k, l and m with keys 3, 6, 1, 2, 9. Show the heap state both in picture form and in array form, as above.

Delete items d and k and show the array contents after these operations.
2. Construct an example of a 2-heap on 15 items for which a *deleteMin* operation requires the largest amount of time possible. Construct an example of a 2-heap on 15 items for which a sequence of 15 *deleteMin* operations requires the maximum amount of time possible.

The 2-heap shown below satisfies both parts of the question.

3. The correctness of any data structure operation depends on its maintaining certain essential *invariants* of the data structure. The data portion of the class declaration for the C++ implementation of the d-heap data structure is shown below. What invariants must be maintained by programs that operate on it? List as many as you can think of.

```c
class dheap {
    int N; // max # of items in heap
    int n; // # of items in heap
    int d; // base of heap
    item *h; // {h[i]} is set of items
    int *pos; // position of item
    keytyp *kvec; // key of item i
    ...
};

for d>1
0<=i<N
for 1<=i<=n, i<h[i]=n
for 1<=i<=n, lpos[i]=i
for 2<=i<=n, kvec[n][i/d]]skvec[h[i]]
for 1<=i<=n, pos[h[i]]=i
for 1<=j<=n, h[i]=h[j], pos[i]=pos[j]
```
4. The figure below shows an intermediate state in the execution of Prim’s algorithm. The heap and the cheap mapping are shown below $(d=2)$.

Show the state after four more steps have been performed.