Fibonacci Heaps

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Fibonacci Heaps

- Collection of *meldable* heaps
 - *meld* operation combines two heaps
 - each heap is identified by one of its members (its *id*)
 - initially, all items form singleton heap
 - good *amortized running time*

- Heap operations
 - *findmin*(h): return an item of minimum key in (heap with id) h
 - *insert*(i, x, h): insert item i into heap h with key x
 - i must be a singleton heap
 - *delete*(i, h): delete item i from h and return resulting heap's id
 - *deletemin*(h): delete a min key item from h; return it and new id
 - *meld*(h₁, h₂): return id of heap formed by combining h₁ and h₂; operation destroys h₁ and h₂
 - *decreasekey*(Δ, i, h): decrease key of i in h by Δ; return new id
Structure of Fibonacci Heaps

- Each F-heap is represented by a collection of heap-ordered trees
 - each node has its item’s key, an integer rank and a mark bit
 - rank(i) equals the number of children of i
 - each node has pointers to its parent, its left and right siblings and one of its children
 - the tree roots are linked together on a circular list
 - heap is identified by a root node of minimum key

![Diagram of Fibonacci Heaps]
Implementing F-Heap Operations

- For *meld*, combine root lists; implement *insert* as *meld*
 - new heap identified by item of minimum key; takes $O(1)$ time
- For *delete*(i,h)
 - perform a *decreasekey* at i, to make i the item with smallest key
 - perform a *deletemin* to remove i from the heap
 - restore original key value of i
 - time is just sum of times for *deletemin* and *decreasekey*
- For *deletemin*
 - remove min key item from root list
 - combine its list of children with root list and clear mark bits of children
 - find new min key node
 - while doing this, combine trees with root nodes of equal rank until no two
 nodes in root list have same rank
DeleteMin combines trees with equal rank roots

- Insert tree roots into an array, at position determined by their rank
- Make one root a child of the other whenever there is a “collision”
 - Note that root of new tree increases its rank

For decreasekey(Δ,i,h)

- Subtract Δ from key(i) then cut edge joining i to its parent p
- Make detached subtree a separate tree in heap and clear its mark bit
- If key(i) < key(h), i becomes the min node of heap
- If p is not a tree root, and i is second child cut from p, since p became child of some other node, cut edge from p to its parent
 - Apply this rule recursively to parent of p, then its parent,...
 - Use mark bit to identify nodes that have lost a child
- Increases number of trees, decreases number of marked nodes
Amortized Analysis

- Objective is to bound total time for sequence of ops
 - some individual ops may take more time than others
 - expensive ops must be balanced by (earlier) inexpensive ops
- To facilitate analysis, imagine we’re given credits for each operation
 - one credit pays for one unit of computation
 - credits not used to pay for a current op can be saved for later
 - the credit allocation for each operation is its effective cost
- Central question: “How many new credits needed for each op to ensure there are always enough on hand?”
- Following credit invariant is key to analysis

 $\text{at all times, the number of credits on hand is at least the number of trees in all heaps, plus twice number of marked non-root nodes}$
- Determine number of new credits needed per op to pay for the op and maintain validity of invariant
 - \textit{findmin}, \textit{insert} and \textit{meld} each take constant time and don’t affect invariant, so just one new credit for each op
 - time for \textit{deletemin} bounded by number of steps in second part
 - so, need one new credit per step plus one for every net new tree
 - details to come
 - time for \textit{decreasekey} bounded by number of cuts performed and each cascading cut involves a marked node

- Detailed analysis of \textit{decreasekey}
 - let \(k \) = number of cuts made by \textit{decreasekey}
 - running time for \textit{decreasekey} is \(O(k) \)
 - number of trees increases by \(k \)
 - number of marked non-root nodes \textit{decreases} by \(k-2 \)
 - so, the number of new credits needed is \(k+k-2(k-2)=4 \)
 - so, cost of the \textit{decreasekey} is \(O(1) \)
Detailed Analysis of Deletemin

- Detailed analysis of *deletemin*
 - let k = rank of node removed in *deletemin*
 - number of trees increases by k during first part of the op
 - number of marked non-root nodes does not increase
 - in second part, trees with roots of equal rank are combined
 - let p = # of times a tree root collides with another,
 - let q = # of times a tree root is inserted with no collision
 - running time for *deletemin* is $O(p+q)$
 - number of trees decreases by p during the second part
 - so, number of new credits needed to pay for the op and maintain credit invariant is $(p+q)+(k-p)=k+q$
 - note that both k and q are bounded by the max rank, which we will show is $O(\log n)$
- So, $O(s+t\log n)$ time for *s findmin, meld* or *decreasekey* ops plus t *delete* or *deletemin* ops
Bound on Ranks

- **Lemma 1.** Let x be any node and let y_1, \ldots, y_r be children of x, in order of time in which they were linked to x (earliest to latest); then, $\text{rank}(y_i) \geq i-2$ for all i

 Proof. Just before y_i was linked to x, x had at least $i-1$ children. So at that time, $\text{rank}(y_i)$ and $\text{rank}(x)$ were equal and $\geq i-1$. Since y_i is still a child of x, its rank has been decremented at most once since it was linked, implying $\text{rank}(y_i) \geq i-2$.

- **Corollary 1.** A node of rank k has $\geq F_{k+2} \geq \phi^k$ descendants (including itself), where F_k is the k-th Fibonacci number, defined by $F_0 = 0$, $F_1 = 1$, $F_k = F_{k-1} + F_{k-2}$ and $\phi = (1 + 5^{1/2})/2$.

 Proof. Let S_k be min possible number of descendants of a node of rank k; clearly, $S_0 = 1$, $S_1 = 2$ and by Lemma 1, $S_k \geq 2 + \sum_{i=1}^{k-2} S_i$ for $k \geq 2$; the Fibonacci numbers satisfy $F_{k+2} = 1 + \sum_{i=1}^{k} F_i$, from which $S_k \geq F_{k+2}$ follows by induction on k.

Corollary implies that $\text{rank}(x)$ is $O(\log n)$.
Exercises

1. Assume that items a through m with keys 3, 5, 2, 7, 4, 10, 8, 6, 3, 6, 1, 2, 9 are inserted in alphabetical order into a
Fibonacci heap. Show the heap following the insertions. Then do a deleteMin and
show the resulting heap state.

Data structure after insertions (single
node trees linked in circular list)

Data structure after deleteMin (including
linking process).

2. Let $P_d(n)$ denote the running time of Prim’s
algorithm using d-heaps, where the value of d is
chosen dynamically to give the best overall
running time. Let $P_f(n)$ denote the running time of
Prim’s algorithm, using Fibonacci heaps. Which of
the following statements is true? Justify your
answers.

- P_d is $O(P_f)$ when $m = 3n$.

 This is true, since $P_d = O(m \log n)$ and $P_f = O(n \log n)$.

- P_d is $O(P_f)$ when $m = n^2/4$.

 This is true, since $P_d = O(m \log n)$ and $P_f = O(n \log n)$.

- P_d is $O(n^2)$ when $m = n$.

 This is false, since $P_d = O(m \log n)$ and $P_f = O(n \log n)$.

- P_d is $O(n^{3/2})$ when $m = 3n$.

 This is true, since $P_d = O(m \log n)$ and $P_f = O(n \log n)$.
3. In the Fibonacci heaps data structure, a cut between a vertex \(u \) and its parent \(v \) causes a cascading cut at \(v \) if \(v \) has already lost a child since it last became a child of some other vertex. Suppose we change this, so that a cascading cut is done at \(v \) only if \(v \) has already lost two children. How does this change alter the lemma shown below (this lemma is from the analysis of the running time of Fibonacci heaps)? Explain your answer.

Lemma. Let \(x \) be any node in an F-heap. Let \(y_1, \ldots, y_r \) be the children of \(x \), in order of time in which they were linked to \(x \) (earliest to latest). Then, \(\text{rank}(y_i) \geq i-2 \) for all \(i \).

The inequality in the lemma becomes \(\text{rank}(y_i) \geq i-3 \). Since \(y_i \) had the same rank as \(x \) when it became a child of \(x \) and \(x \) must have had at least \(i-1 \) children at that time, \(y_i \) must have had rank of at least \(i-1 \) when it became a child of \(x \). Since it still is a child of \(x \), it can have lost at most two children since that time, so its rank must be at least \(i-3 \).

Let \(S_i \) be the smallest possible number of descendants that a node of rank \(k \) has, in our modified version of Fibonacci heaps. Give a recursive lower bound on \(S_i \). That is, give an inequality of the form \(S_i \geq f(S_0, S_1, \ldots, S_{i-1}) \) where \(f \) is some function of the \(S_i \)'s for \(i \leq k \).

Clearly \(S_0 = 1, S_1 = 2 \) and \(S_2 = 3 \). For \(k > 2 \), we can use the modified lemma to conclude that \(S_k \geq 3 + S_0 + S_1 + \ldots + S_{k-1} \). Note that the difference between the bounds for \(S_k \) and for \(S_{k-1} \) is \(S_{k-2} \).

Use this to give a lower bound on the smallest number of descendants that a node with rank 7 can have.

From the above, we have \(S_3 = 3 + S_0 = 4, S_4 = 4 + S_1 = 6, S_5 = 6 + S_2 = 9, S_6 = 9 + S_3 = 13, S_7 = 13 + S_4 = 19 \).