Review Notes 2

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Big Picture

- Kruskal’s algorithm and partition data structure
 - partition operations and how they are used in Kruskal’s algorithm
- Analysis of partition data structure
 - basic lemmas and $O(m \log \log n)$ analysis, multilevel analysis
- Round-robin algorithm and leftist heaps
 - leftist heap operations; lazy deletion
 - use of leftist heaps and partition in round-robin; analysis
- Edmonds algorithm for max size matchings
 - blossom shrinking, use of partition to represent blossoms, finding paths
- Applications of matching
 - edge coloring, TSP approximations (MST+matching, cycle-patching)
- Linear programming and network optimization
 - primal/dual formulations, complementary slackness condition
- Edmonds algorithm for max-weight matching
 - max weight augmenting paths, use of vertex labels, equality edges, label adjustment, odd blossoms
Kruskal’s algorithm and Partition

- Kruskal
 - how the algorithm works; relation to greedy method
 - role of Partition in algorithm
 - running time and role of sorting vs. tree-building

- Partition
 - find and link operations
 - link-by-rank and path compression
Analysis of Partition

- Basic lemmas
 » properties of *rank*, tree size, number of nodes of rank *k*
- $O(m \log \log m)$ analysis
 » dominant nodes and their role in dividing analysis into two parts and counting find steps
 » how analysis can be adapted for path compression only
- Multi-level analysis
 » how blocks and levels are defined
 » meaning and implications of singular/non-singular nodes
 » how analysis divides find steps into different categories
 » how bound on # of nodes with rank *k* is used in analysis
Round Robin and Leftist Heaps

- Leftist heaps
 - how ranks are defined and updated during melds
 - lazy deletion and melding, including purge and heapify
 - analysis of heapify

- Round-robin
 - relation to general greedy method
 - how Partition and leftist heaps are used in algorithm
 - role of Partition in lazy deletion
 - how passes are defined and used in the analysis
 - distinction between “small” and “large” findmins and how this is used to divide analysis into two cases
Max Matching in General Graphs

- Blossoms and blossom-shrinking strategy
- Why Edmonds works
 - blossom-shrinking preserves existence of augmenting paths
 - Edmonds keeps shrinking blossoms until path found
- Efficient implementation
 - how trees are built and the role of odd/even status
 - role of Partition data structure and origin mapping to represent the "current shrunken graph"
 - how algorithm determines if two nodes are in same tree and if so, finds their nearest common ancestor
 - use of bridge mapping and reversible list data structure to recover augmenting path
Applications of Matchings

- **Edge coloring in bipartite graphs**
 - find sequence of max degree matchings

- **Traveling salesman problem**
 - Christofides’ algorithm for symmetric TSP with triangle inequality
 - find MST, then min weight perfect matching in “odd-degree subgraph”, combine for Eulerian tour, then take short-cuts
 - tour length at most 1.5 times longer than optimum length
 - Karp’s algorithm for asymmetric TSP with random distances
 - find min weight perfect matching in bipartite graph
 - use to define min weight cycles in original graph
 - patch short cycles into long cycle
 - tour length close to optimum length with high probability
Linear Programming

- Standard matrix form for primal
- LP formulations of common problems
 - max flow, min-cost flow, shortest paths, matchings
- Deriving the dual from the primal
- Relationship between objective function values of primal and dual
- Complementary slackness
 - writing the slack vector for a given solution
 - checking the complementary slackness condition
 - understanding implications for optimality
Edmonds Weighted Matching

- How max weight augmenting paths yield max weight matchings
- Primal/dual strategy
 - use of equality edges (in both bipartite/general cases)
 - how this yields max weight augmenting paths
 - label adjustment procedure (both cases)
 - role of $\delta_1, \delta_2, \ldots$
 - how adjustment preserves validity of conditions (1), (2)
 - role of data structures in bipartite case
 - for general graphs
 - carry-over of blossoms across multiple path searches
 - expanding of odd blossoms during path search