1. Let $p=d,f,g,c,a,e,b$ be a path (d comes first, b last), with costs 7, 3, 4, 6, 5, 3, 4. Draw a binary tree with root c that represents this path, labeling each node with its cost and its mincost. Now, draw a second version of the tree, labeling each node with its Δmin and Δcost values.

2. Given a node x in a search tree with Δmin and Δcost values, describe an algorithm to compute the cost and mincost for x. Describe an algorithm for increasing the cost of all nodes in a tree with root r by some value D.
3. Given a binary search tree where each node is labeled by its cost and mincost values, describe an algorithm to find the last (rightmost) node that has the minimum cost, among all nodes in the tree.