Advanced Multicast Switching

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Copy-then-Route Multicast

- Input lookup gives fanout and Multicast ID (MI)
- Copy net sends cells to consecutive output ranges
 » distributes load by changing starting point of range
 » unicast cells distributed similarly
 » needs no extra speedup
- Multicast routing tables
 » entry per multicast session
 » output numbers assigned cyclically with wrap-around
 » highly redundant for small fanout sessions
- VOQs before routing net for traffic scheduling
Reducing Routing Table Redundancy

- Every multicast session requires an entry in every routing table - inefficient for small fanout sessions
- Can improve efficiency by routing “small fanout” sessions to restricted subset of routing tables
 - perform load distribution within subsets of size $O(n^{1/2})$
 - reduced redundancy to $O(n^{1/2})$
 - requires speedup of $(1+B)$ due to imperfect distribution of small fanout sessions
- Adding and removing endpoints
 - n setup cells for large fanout connections, $n^{1/2}$ for small
 - hardware update support can reduce to $O(F)$
- Can extend to >2 fanout classes (memory vs. bw)
Two-Pass Copy-then-Route

- Unicast cells use one pass
- Multicast cells use two passes
 - rotate starting point to balance load
 - cyclic assignment of output numbers with wrap-around
 - resequencing done cumulatively across both passes
 - speedup of $1+\delta$ where δ is fraction of outgoing traffic in multicast sessions

- Can use same methods to reduce redundancy
 - with two fanout classes $O(n^{1/2})$ redundancy, speedup of $1+2\delta+B$
 - with r classes $O(n^{1/r})$ redundancy, speedup of $1+r\delta+(r-1)B$

- Two stage traffic regulation for multicast
 - control total multicast traffic volume in first pass
System Level Traffic Regulation

- Unicast uses rate-controlled VOQs at all inputs
- Two stage regulation of multicast
 - first pass regulates total multicast traffic volume to avoid congestion
 - use per multicast flow queues at inputs to prevent hogging
 - separate set of multicast VOQs for second pass
 - objective is to minimize delay variation for multicast traffic
 - essential for reliable resequencing
 - if multiple fanout classes used, need separate set of multicast VOQs for each class
- Can provide strong performance guarantees if total multicast traffic is not excessive
 - can isolate “compliant flows” from greedy flows
Multicast Static Routing Networks

- Routing tables in each SE specify branching
- Multicast Index (MI) supplied by input port
- MI used to lookup bit vector specifying branching
 » may use direct lookup or hash
Nonblocking Multicast

■ A session is triple \((x, Y, \omega)\) where \(Y\) is an output set
 » route is subtree of network connecting \(x\) to all of \(Y\)

■ Compatibility
 » set of sessions is compatible if total weight per input/output is \(\leq 1\)
 » set of routes is compatible if total weight per internal link is \(\leq S\)

■ A state of a network is a set of compatible sessions and corresponding compatible routes

■ Nonblocking properties
 » strict – in any state, can add new session or extend existing one
 » wide-sense – can add new session or extend session in all states that can be reached by a specific routing algorithm
 » reroutable – can add new session in all reachable states
 » rearrangeable – can route any set of compatible sessions
Nonblocking Condition for Clos

Theorem. For multicast sessions $C^3_{n,d,r}$ is wide-sense nonblocking if

$$
 r > \left\lfloor \frac{F \cdot \frac{d-B}{S-B} + \frac{d-B}{S-B}}{b} \right\rfloor + \left\lfloor \frac{d-b}{b} \right\rfloor \quad \text{if } b > S-B
$$

where $F = \min\{r, n/d\}$.

Proof sketch. If routing algorithm uses greedy branching in third stage, number of middle stage switches not reachable from an input is $\leq \left\lfloor F(d-B)/(S-B) \right\rfloor - 1$ and number not reachable from an output is $\leq (d-B)/(S-B) - 1$.

If $d-n^{1/2}$ and S is a constant (not dependent on n), need $O(n)$ middle stage switches – impractically expensive.

Can derive similar condition for Benes – also not practical.
Cascaded Benes Networks

- Limit fanout to f in each Benes network
- If $f \leq d$, and there are $\log_f n$ subnets, no blocking when

$$S \geq (f + 1)(1 - 1/d)(k - 1) + (f + 1)/d + B$$

when $f=4$, cost is about $(5/4)\log_2 n$ times the cost of nonblocking unicast network (so $10\times$ for $n=256$)
- Can merge boundary stages to reduce cost
Multipass Variant

- Binary branching in each pass
- Re-route to modify session
 - extend session by inserting additional binary branch point
 - retract session by removing binary branch point
 - time required comparable to unicast
- With Benes network, no blocking if

\[S \geq 2(1 + \delta)((1 - 1/d)(k - 1) + 1/d) + (1 - (1 + \delta)/d)B \]

where \(\delta \) is multicast traffic fraction
- Only method for which network cost and time per operation is roughly comparable with unicast
Pippenger Network

- Recursive construction
 - branch as needed in first stage
 - nonblocking unicast switches act as concentrators
 - repeat in smaller subnets
- Using Benes networks for concentrators need
 \[S \geq 2(1 - 1/d)(k - 1) + (1 - 1/d)B + 2/d \]
- Cost is roughly \(\log_2 n \) times cost of unicast net
- Can also use to construct rearrangeable network
Making Clos Reroutably Nonblocking

- Limit branching in first stage to $f \leq \Gamma$

- **Theorem.** $C^3_{n,d,r}$ is reroutably nonblocking if
 $$r > \left\lceil \frac{\Gamma(d-B)}{(S-B)-1} \right\rceil + \left\lceil \frac{(d-B)}{(S-B)-1} \right\rceil (n/d)^{1/f}$$
 if $b=0$ and first stage fanout is limited to f.

 Can choose f to minimize r.

 Key to proof is a lemma concerning the set covering problem:
 - Given a set $A = \{a_1, \ldots, a_t\}$, and a collection $S = \{S_1, \ldots, S_n\}$
 where each S_i is a subset of A, find the smallest possible number of sets S_i whose union equals A.

 - The **greedy algorithm** for set covering selects sets one at a time, always picking the next set that covers the most previously uncovered elements.
Set Covering Lemma

Lemma. Let $A = \{a_1, \ldots, a_t\}$ and $S = \{S_1, \ldots, S_p\}$ be an instance of set covering in which every a_i appears in $\geq p-q$ sets for some q. If $p > qt^{1/2}$ then the greedy solution uses $\leq t$ sets.

Proof. Let h be the number of sets in the greedy solution and assume sets are numbered so that for $1 \leq i \leq h$, S_i is the set chosen in step i. Define $U_i = S_1 \cup \ldots \cup S_i$ and let $D_i = S_i - U_{i-1}$, $s_i = |S_i|$, $u_i = |U_i|$, $d_i = |D_i|$. Then,

$$ps_i \geq \sum_{j=1}^p s_j \geq (p-q)t$$

so $u_i \geq (1-q/p)t = (1-x_0)t$

where $x_j = (q-j)/(p-j)$. Next, note that

$$(p-1)d_i \geq \sum_{j=1}^p D_i \geq (p-q)(l-u_i) \quad \text{so} \quad d_i \geq (1-x_0)(l-u_i)$$

$$u_i = u_{i-1} + d_i \geq (1-x_0)l + x_0u_{i-1} \geq (1-x_0)t + x_0(1-x_0)t = (1-x_0)t$$

Similarly, we find that for $i \leq h$, $u_i \geq (1-x_{i-1} \ldots x_1x_0)t$. In particular

$$u_i \geq (1-x_{i-1} \ldots x_1x_0)t \geq (1-x_0)^{i}t \geq (1-(1/t))^i - t - 1$$

So, U_i has $>t-1$ elements and since $|A| = t$, $|U_i| = t$.

Proof of Nonblocking Theorem

To prove theorem, show that one can setup a route of weight \(B \) from an input \(x \) to some arbitrary set of outputs.

Let \(p \) be the number of second stage switches reachable from \(x \) and note that \(p \geq r - f(d-B)/(S-B) - 1 > (d-1)/(S-B) - 1 (n/d)^{1/r} \), using the bound on \(r \) in the statement of the theorem.

Note that each third stage switch can be blocked from reaching at most \((d-B)/(S-B) - 1 \) second stage switches.

To prove the theorem, apply the lemma by letting \(A \) be the set of switches in the third stage (so \(t = n/d \)). Define \(S_j \) to be the set of third stage switches that can be reached by the \(j \)-th second stage switch that is reachable from \(x \).

Observe that each third stage switch appears in at least \(p - [(d-B)/(S-B) - 1] \) of the \(S_j \), so let \(q = [(d-B)/(S-B) - 1] \).

Now, we see that \(qt^{1/r} = [(d-B)/(S-B) - 1] (n/d)^{1/r} \) and since \(p \) is larger than this, the lemma tells us that we can reach all the third stage switches through just \(f \) of the second stage switches.
Other Reroutable Networks

- Cascaded pair of Bcncs nets is reroutable if
 \[S \geq 2(1 - 1/d)(k - 1) + (1 - 1/d)B + 2/d \]
 and branching is allowed only in second network
 - new sessions are routed through most lightly loaded part of second network
- can merge stages at boundary
 - if \(k = 2 \), this yields five stage network with speedup \(= 2 + B \)
 - can eliminate one stage at the expense of higher speedup
 \[S \geq (3/2) + (1-1/d)B + ((5/4)-(B/d))^{1/2} \approx 2.62 + B \]
- Two pass variant requires speedup
 \[S \geq 2(1 + \delta)(1 - 1/d)(k - 1) + B + 2(1 + \delta)/d \]
 where \(\delta \) is multicast fraction