Probability Refresher

Jon Turner
Computer Science & Engineering
Washington University

www.arl.wustl.edu/~jst
Basic Concepts

- Probability theory is study of random experiments
 - example: toss coin 6 times & observe head, tail sequence
- Possible experiment outcomes are sample points, a set of sample points is an event, set of all sample points is sample space
 - HHHHHH is sample point, set of sequences starting with single T is event, and set of all head, tail sequences of length 6 is the sample space ($2^6=64$ points in space)
- Coin toss example involves discrete sample space.
- Can also have continuous sample spaces
 - example: instantaneous voltage measured on an analog communication channel at an arbitrary instant in time
Basic Properties

- For discrete sample space S, the *probability distribution* of S is function \Pr that maps sample points to real numbers in $[0,1]$ and satisfies
 \[\sum_{a \in S} \Pr(a) = 1 \]

- If A and B are events in a discrete sample space,
 \[\Pr(A) = \sum_{a \in A} \Pr(a) \]
 \[\Pr(A \cup B) = \Pr(A) + \Pr(B) - \Pr(A \cap B) \leq \Pr(A) + \Pr(B) \]
 \[\Pr(A | B) \Pr(B) = \Pr(A \cap B) = \Pr(B | A) \Pr(A) \]

- A and B are *independent* if $\Pr(A | B) = \Pr(A)$
 - in this case, $\Pr(A \cap B) = \Pr(A) \Pr(B)$
Calculating Probabilities Piecewise

- If H_1, \ldots, H_k are events that are mutually exclusive and exhaustive (that is, every sample point is in exactly one of the H_i), then

$$\Pr(A) = \sum_{i=1}^{k} \Pr(A \cap H_i) = \sum_{i=1}^{k} \Pr(A|H_i) \Pr(H_i)$$

- Often easier to calculate probabilities of pieces of an event, then sum to get total probability.
Random Variables

- A *random variable* is a function whose domain is the sample space
 - example: the # of heads in a sequence of 6 coin tosses

- For a *discrete random variable* x_i,
 - event $x = t$ is set of sample points that x maps to value t
 - the probability distribution of x is function f_x that satisfies

 \[f_x(t) = \Pr(x = t) = \sum_{a : x(a) = t} \Pr(a) \]

 - if x is number of heads in a sequence of 6 coin tosses
 \[f_x(t) = \binom{6}{t} 2^{-6} \]

 - special case of binomial distribution $B(n, p)$ which gives the probability of # of “successes” in sequence of n independent binary trials, where success probability is p
Continuous Random Variables

- For a continuous real-valued random variable x,
 - the event $x \leq t$ is set of sample points that x maps to values $\leq t$
 - the probability density function for x is the function f_x for which
 \[\Pr(x \leq t) = F_x(t) = \int_{-\infty}^{t} f_x(z)dz \]
 - $F_x(t)$ is called the cumulative density function of x
- The tail probability is
 \[\Pr(x > t) = 1 - F_x(t) = \int_{t}^{\infty} f_x(z)dz \]
Expected Values

- The expected value (expectation, mean) of a random variable x with distribution (or density function) f_x is denoted $E(x)$

 $E(x) = \sum_{t=\infty}^{\infty} tf_x(t)$ (integer valued)

 $E(x) = \int_{\infty}^{\infty} tf_x(t)dt$ (real valued)

- If x is a random variable then $g(x)$ is also, and

 $E(g(x)) = \sum_{t=\infty}^{\infty} g(t)f_x(t)$ or $E(g(x)) = \int_{\infty}^{\infty} g(t)f_x(t)dt$

- If x_1, \ldots, x_n are random variables then

 $E(x_1 + \cdots + x_n) = E(x_1) + \cdots + E(x_n)$
Variance and Standard Deviation

- The variance (σ^2) of a random variable x is a measure of the probability that x differs significantly from the mean
 \[
 \sigma^2 = E(x^2) - E(x)^2 = E((x - E(x))^2)
 \]
 - the standard deviation of a random variable is σ
 - for typical distributions, the probability that a r.v. differs from the mean by more than a few σ is quite small

- If $z = x + y$, where x and y are independent random variables then $\sigma_z^2 = \sigma_x^2 + \sigma_y^2$
 - so when adding n independent identical random variables, the standard deviation of sum grows as $n^{1/2}$
Common Probability Distributions

- If x is r.v. that counts # of successes in series of n independent binary trials with success probability p, then x follows binomial distribution $B(n,p)$,

$$\Pr(x = k) = \binom{n}{k} p^k (1-p)^{n-k} \quad \mu = np \quad \sigma^2 = np(1 - p)$$

- If x is r.v. that counts # of trials up to and including first success in series of independent binary trials with success probability p, then x follows geometric distribution $G(p)$,

$$\Pr(x = k) = (1 - p)^{k-1} p \quad \mu = 1/p \quad \sigma^2 = (1 - p)/p^2$$
Common Probability Distributions

- *Exponential distribution* can be viewed as a continuous version of the geometric distribution

 \[f_x(t) = \alpha e^{-\mu t} \quad F_x(t) = 1 - e^{-\mu t} \quad \mu = 1/\alpha \quad \sigma^2 = 1/\alpha^2 \]

 - often used to model packet inter-arrival times and lengths

- *Pareto distribution* is a “heavy-tailed” distribution. For \(t > t_0 \)

 \[f_x(t) = \alpha t_0^\alpha t^{-(\alpha + 1)} \quad F_x(t) = 1 - (t_0 / t)^\alpha \]

 \[\mu = \frac{\alpha t_0}{\alpha - 1} \quad \text{for } \alpha > 1 \quad \sigma^2 = \infty \text{ for } 1 < \alpha < 2 \]

 - often used to model burst lengths in the Internet
Memoryless Property

- Consider series of independent binary trials with success probability p
 - if A trials pass without success, the distribution of # of trials until next success remains the same, no matter how large A is
 $$\Pr(x \leq A + k | x > A) = \Pr(x \leq k)$$
 - this is the memoryless property

- An exponential r.v. x also has the memoryless property
 $$\Pr(x \leq t + \Delta t | x > t) = \Pr(x \leq \Delta t)$$
 - if packet inter-arrival times are exponentially distributed, time until next packet arrives does not depend on how time since previous packet arrived
Properties of Exponential RVs

- If x and y are independent exponential random variables with parameters α and β respectively, then
 \[\Pr(x \leq y) = \frac{\alpha}{\alpha + \beta} \]

- If $z = \min(x, y)$ is an exponential random variable with parameter $\alpha + \beta$
 - so, if x is the time to next arrival at a queue (mean $1/\lambda$) and y is current outgoing packet finishes (mean $1/\mu$)
 - then $z = \min(x, y)$ is the time until the next arrival or departure and has mean $1/(\lambda + \mu)$
 - and the probability that the arrival comes first is $\lambda / (\lambda + \mu)$
Poisson and Erlang Distributions

- If \(x \) is an exponential random variable with density function \(\alpha e^{-\alpha t} \) that represents the time between successive events, then the number of events \(z \) that occur in a time interval of length \(\tau \) has a Poisson distribution
 \[
 \Pr(z = k) = \frac{(\alpha \tau)^k}{k!} e^{-\alpha \tau} \quad \mu = \alpha \tau \quad \sigma^2 = \alpha \tau
 \]

- If \(x_1, \ldots, x_k \) are identical, independent exponential random variables with density function \(\alpha e^{-\alpha t} \) then \(z = x_1 + \cdots + x_k \) has an Erlang distribution
 \[
 f_z(t) = \frac{\alpha (\alpha t)^{k-1}}{(k-1)!} e^{-\alpha t} \quad F_z(t) = 1 - e^{-\alpha t} \sum_{i=0}^{k-1} \frac{(\alpha t)^i}{i!} \quad \mu = k/\alpha \quad \sigma^2 = k/\alpha^2
 \]
Miscellaneous Useful Facts

■ Stirling’s Approximation
\[
\left(\frac{n}{e}\right)^n \sqrt{2\pi n} \leq n! \leq \left(\frac{n}{e}\right)^n \sqrt{2\pi ne^{1/12n}}
\]

■ Binomial coefficient approximations
\[
\frac{1}{2\sqrt{a}} \leq \frac{1}{2\sqrt{a-b}} \leq \left(\frac{a}{b}\right)^x \leq \left(\frac{a}{b-a}\right)^x \leq \left(\frac{ea}{b}\right)^x
\]

■ From Taylor Series expansion of \(e^x\)
\[
\lim_{x \to 0} e^x = 1 + x
\]

■ Geometric and arithmetic-geometric series
\[
1 + r + r^2 + \cdots + r^{n-1} = \frac{1 - r^n}{1 - r} \quad 1 + r + r^2 + \cdots = \frac{1}{1 - r} \quad (-1 < r < 1)
\]
\[
r + 2r^2 + 3r^3 + \cdots + (n-1)r^{n-1} = \frac{r(1 - nr^{n-1} + (n-1)r^n)}{(1 - r)^2}
\]
\[
r + 2r^2 + 3r^3 + \cdots = \frac{r}{(1 - r)^2} \quad (-1 < r < 1)
\]