Scriptroute

Authors: Neil Spring
David Wetherall
Tom Anderson

Published: USITS, 2003

Problem

• Internet measurement
 – diagnosing problems
 • connectivity between hosts
 • routing / network paths
 – performance
 • available bandwidth
 • congestion
Two Solutions

• NIMI
 - lots of functionality
 - 'closed' system
 - seems to be the same for SAMI

• traceroute
 - restricted to essentially one function
 - 'open' system

New Solution

• Ideal solution should:
 - have locally maintained infrastructure
 - be easily extendable
 • infrastructure
 • functionality
 - be deployed widely
 • open system
 • some benefit for providers
New Solution

- Real solution needs to balance security with the ideal solution
 - can not facilitate malicious behavior
 - can not open local host to additional attacks
- Have to put security first, but not in an unreasonable way
 - ensure that no amplifications of attack traffic are possible
 - malicious users get no benefit

Scriptroute

- Three basic components
 - front-end
 - interpreter
 - network guardian

Figure from "Scriptroute: A Public Internet Measurement Facility"
Front-end

- Public web server, thttpd
 - limits execution time and size of script
 - limits number of executing scripts
- Users submit scripts via a POST form
- Script is processed
- Results are displayed to user

Interpreter

- Takes submitted script and runs it in a sandboxed environment
- Resource limits are placed on each instance of the interpreter
- Interpreter communicates with network guardian via the Send-train API (sockets)
 - request: set of (delay,probe)
 - reply: set of (time,probe,time,response)
Interpreter

- Resource limits
 - kernel limit on processor time and memory usage
 - one process per running script
 - total number of interpreters (also, per user)
- Each script instance runs in a chroot environment
 - chroot only contains interpreter and logs
 - interpreter runs as nobody in safe-mode

Network Guardian

- Takes packet transmission requests from the interpreter
- Regulates the traffic sent based on configurable filters and limits
- Gathers responses to probes and sends data back to interpreter
- Uses raw sockets and libpcap
Network Guardian

- **Resource Limits**
 - probes must be well-formed and meet source and destination requirements
 - rate-limiting of packets based on token buckets (sending rate and number of packets)
- **All packets also logged**
 - provides some level of accountability and reference if problems occur

Figure from “Scriptroute: A Public Internet Measurement Facility”
Operation

• Public servers exist, mostly on Planetlab right now (~400 running public servers)
• Users can find a server via the scriptroute homepage and upload scripts via http to run on that server
• Alternatively, a local server can be built
 - encouraged to do this because local (i.e., shell) users have more access to the system, which can facilitate debugging

Examples using Scriptroute

• Reverse Path Tree
 - build a tree representing paths from active scriptroute servers to some destination
 - uses scriptroute version of traceroute combined with IP aliasing and path memory
• See webpage and example
Examples using Scriptroute

- Basic tools (traceroute, ping, etc) provided in distribution of scriptroute
- Quick example of traceroute and ping running from a local install of the server
- Also able to run these from another server
 - web interface
 - local ruby interface
 - need an authentication cookie for Planetlab

Conclusion

- Open, flexible system
- Server admins retain control
- Has been implemented
- Many servers already available
- Appears to maintain security