One More Bit Is Enough

Yong Xia, Shivkumar Kalayanaraman,
Rensselaer Polytechnic Institute
Lakshminarayanan Subramanian, Ion Stoica,
University of California, Berkeley
SIGCOMM’05

Presenter: Max Podlesny
Discussion leader: Ben Wun

Forecast

- Designing and implementing a simple, low-complexity congestion control protocol
Drawbacks of Congestion Control Schemas

- End-to-end and explicit feedback based schemas
- Degree of congestion is not revealed in end-to-end schemas (TCP, TCP+AQM/ECN)
- Delay-based methods are sensitive to minor delay variations
- Hard to deploy in Internet schemes using explicit rate feedback
 - A lot of bits to encode the congestion-related information (XCP)
 - IP headers do not have those bits

Problem statement

- Designing a congestion control protocol having:
 - high utilization (comparable to XCP)
 - reasonable fairness
 - ability to be deployed in current Internet
 - low persistent queue length
 - negligible packet loss rate
Main ideas

- Decouple efficiency control and fairness control
 » Use of different modes for achieving efficiency and fairness
- Use link load factor as the congestion signal
 » Load factor = users’ demand / link capacity
 » Switching controller
 » Congestion degree indicator

How VCP works

- Checking load factor at each step
- Possible states:
 » Low load ([0;80%])
 » High load ([80%;100%])
 » Overload ([100%; ∞])
- Codes of states
 » Low load: (01)
 » High load (10)
 » Overload (11)
Load factor transition point

- Requirements for transition point:
 - Achieving high utilization
 - Multiplicative Decrease should move the system to the high-load state
 - If being in low-load state one Multiplicative Increase step should move the system to the high-load state
- $\beta > 0.95$ induces 14 RTTs to halve cwnd
- $\beta = 0.5$ induces reduction of network utilization
- $\beta = 0.875$ satisfies the requirements
- Load factor transition point is 80%

Load factor estimation

- Tradeoff between two requirements
 - Monitoring the reaction on feedback
 - Avoidance queue buildup
- 75%~90% of flows have RTTs < 200ms
- Period of estimations is 200 ms
- Calculation of load factor:

$$\rho_l = \frac{\lambda_l + \kappa_q \cdot \tilde{q}_l}{\gamma_l \cdot C_i \cdot t_\rho}$$
Congestion control adjustments

- AI: \(\text{cwnd}(t+\text{rtt}) = \text{cwnd}(t)(1+\xi) \)
- MI: \(\text{cwnd}(t+\text{rtt}) = \text{cwnd}(t) + \mathcal{H} \)
- MD: \(\text{cwnd}(t+\delta t) = \text{cwnd}(t)\beta \)
- \(\text{rtt} = t_\theta \)

Congestion control parameters

- RTTs are equal for all flows
 - AI: \(\mathcal{H} = 1 \)
 - MI: \(\mathcal{H}(\rho) = \kappa(1-\rho)/\rho \)
 - No information about exact value of \(\rho \)
 - \(\mathcal{H}(\rho) \) is minimum at \(\rho = 80\% \)
 - \(\mathcal{H}(0.8) = 0.0625 \)
 - Stability of the algorithms requires that \(\kappa = 0.25 \)
 - MD: \(\beta = 0.875 \)
- RTTs are heterogeneous
 - AI: \(\mathcal{H}_s = \mathcal{H}\text{rtt}/t_\theta \)
 - MI: \(\mathcal{H}_s = (1 + \mathcal{H})^{\text{RTT}/t_\theta} - 1 \)
 - MD: \(\beta = 0.875 \) as it is performed once per period of load factor estimation in case of congestion
 - Scaling for fairness:
 - \(\mathcal{H}_{\text{rate}} = \mathcal{H}(\text{rtt}/t_\theta)^2 \)
VCP parameter setting

<table>
<thead>
<tr>
<th>Para</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_p</td>
<td>200 ms</td>
<td>the link load factor measurement interval</td>
</tr>
<tr>
<td>t_q</td>
<td>10 ms</td>
<td>the link queue sampling interval</td>
</tr>
<tr>
<td>γ_t</td>
<td>0.98</td>
<td>the link target utilization</td>
</tr>
<tr>
<td>κ_q</td>
<td>0.5</td>
<td>how fast to drain the link steady queue</td>
</tr>
<tr>
<td>κ</td>
<td>0.25</td>
<td>how fast to probe the available bw (MI)</td>
</tr>
<tr>
<td>α</td>
<td>1.0</td>
<td>the AI parameter</td>
</tr>
<tr>
<td>β</td>
<td>0.875</td>
<td>the MD parameter</td>
</tr>
</tbody>
</table>

Analysis of VCP Model Stability

- $\kappa \leq 0.5$ makes sure asymptotic stability of user’s rates
- High utilization, fairness, zero steady-state queue length and zero packet loss rate are achieved at the equilibrium
Simulations parameters

- ns-2
- Link capacities: [100Kbps; 5Gps]
- RTTs: [1ms; 1.5s]
- Numbers of long-lived, FTP-like flows: [1; 1000]
- Arrival rates of short-lived, web-like flows: [1per s; 1000per s]
- Data packet size: 1000 bytes
- ACK packet size: 40 bytes
- Time of simulations: no less than 120s
- Utilization and throughput are averaged over 500ms
- Queue length and cwnd are sampled every 10ms

Results: one bottleneck

- Utilization is at least 93%
- Utilization gap is 7%
- Very low capacities (100Kbps) induce bottleneck average queue increase to 50% of the buffer size
Results: one bottleneck

- Utilization is 85%~94% for RTTs > 800ms
- The average queue is < 5% of the buffer size
- The average queue is up to 15% for very low RTT (1ms)

Results: one bottleneck

- High utilization
- The average queue is < 5% of the buffer size
Results: multiple bottlenecks

- Average utilization is 94%
- The average queue is < 0.2% of the buffer size
- Zero packet drops

Results: Fairness

- VCP reveals good fairness but its fairness converges significantly longer than XCP
Conclusion

- Development of VCP
 - Simplicity, low-complexity, usage for BDP networks
 - High utilization, reasonable fairness, low persistent bottle-neck queue, negligible packet loss rate
 - Two bits to encode the network congestion information, i.e. no changes of the IP header

Questions