Problem 1
Consider the following parallel program:

```c
int X; // Global (shared)
void inc() { int n; for (n=0; n<20; n++) ++X; }
void dec() { int n; for (n=0; n<20; n++) --X; }
void main() { X=0; parbegin ( inc(), dec() ); print(X); }
```

a) Determine the lower and upper bounds on the final value of the shared variable \(X \) displayed by the program and explain how you arrived at this answer. Assume processes can execute at any relative speed and that a value can be incremented/decremented after it has been loaded into a register.

b) Answer Part a assuming that we generalize the program to \(N \) concurrent inc processes and \(N \) concurrent dec processes.

Problem 2
Shown below is Lamport’s bakery algorithm:

```
(1) 1 choosing[i] = TRUE;
(1) 2 num[i] = 1 + max(num[0], ..., num[N-1]);
(1) 3 choosing[i] = FALSE;
(1) 4 for j=0 to N-1 {
(1) 5 while (choosing[j]) { ... do nothing ... }
(1) 6 while ((num[j] != 0) and ((num[j], j) < (num[i], i))) {...do nothing...}
(1) 7 }
(1) 8 ... critical section ...
(1) 9 num[i] = 0;
```

The parenthesized expressions are the time units required to execute the statement once. The next column shows the line number. Furthermore, assume the following:

1) There are two processes (0, and 1) that start executing line 1 simultaneously at time 0.

2) The result of an assignment statement (e.g., line 1) is not visible until the statement finishes execution. For example, the result of line 1 is not visible until time 1.

Answer the following questions:

a) At what time will each process finish executing the last line of the algorithm? Explain how you arrived at this answer.

b) Repeat Part a but assume that there are four processes.
c) Repeat Part a assuming one change in the assumptions: Process k ($k = 0, 1$) takes $10(1 - k)$ time units to execute line 2 ("$\text{num}[i] = 1 + \max(\ldots)$").

d) In general, what would be the result of deleting line 5 from Lamport’s algorithm?

Problem 3
Stallings, Problem 5.8