I/O Devices (CSE 422S)

Ken Wong
Washington University

kenw@wustl.edu
www.arl.wustl.edu/~kenw

I/O Architectures

I/O Operations (1)

- **Programmed I/O (Direct I/O with Polling)**
 - **Direct I/O**: Processor issues I/O command on behalf of a process
 - **Poll**: Process busy-waits for I/O completion

- **Direct Memory Access (DMA)**
 - A Specialized processor that transfers data between memory and I/O device while CPU does other tasks
 - **Operation**
 - OS loads DMA registers: Request type, Count, Buffer Address
 - Processor issues block I/O command to DMA module on behalf of a process
 - DMA module controls movement of data between main memory and controller
 - Processor continues with other instructions and is interrupted by controller when I/O completes

I/O Port

- **I/O Port (Unified approach to I/O programming)**
 - Set of addresses (perhaps mapped to memory)
 - Control Register: Commands
 - Status Register: Internal state of device
 - Input Register: Data *pulled* from device
 - Output Register: Data to be *pushed* to device
I/O Operations (2)

- **Interrupt-Driven I/O**
 - Processor issues I/O command on behalf of a process
 - Processor continues with other instructions and is interrupted by controller when I/O completes
 - Relieves CPU from waiting for every I/O event
 - Many CPU cycles still spent transferring data

I/O Buffering Schemes

- **Purpose:** Smooth out I/O traffic
 - OS | User Process
 - ![No Buffering](image1)
 - ![Single Buffering](image2)
 - ![Double Buffering](image3)
 - ![Ring Buffering](image4)

Simple Disk Geometry

- Areal density (and capacity) has been doubling every 2-3 years

Physical Disk Management

- **Physical Formatting**
 - Create (on the disk surface) the electronic patterns that define the smallest data transfer unit (sector)
 - Header: Sector number, bad sector information
 - Body: Data (sector contents)
 - Trailer: Error detection/correction
 - Create an initial disk label
 - Define partitions (cylinder groupings)
 - Record disk geometry (# cylinders, # heads, # sectors/track)
- **Bad sector (a sector with at least 1 bad bit)**
 - Sector Forwarding: Chain bad sector to a sector in extra cylinder
 - Sector Slipping: Forward shift header information on a track
Disk Request Time

- Average Seek Time: \(t_{\text{seek}} = k_0 + n_{\text{cylinders}} k_1 \)
- Average Rotational Latency (Delay): \(t_{\text{rotation}} = T_r/2 \)
- Average Transfer Time: \(t_{\text{transfer}} = T_r \frac{L_{\text{block}}}{C_{\text{track}}} \)
- Average Access Time: \(t_{\text{access}} = t_{\text{seek}} + T_r/2 + T_r \frac{L_{\text{block}}}{C_{\text{track}}} \)

Disk Request Time Examples

- **Disk Parameters**
 - Average Seek Time: 20 ms
 - Rotation Speed: 7200 RPM (\(T_r = 8.35 \) ms rotation time)
 - 512-byte sectors
 - 64 sectors per track \(\Rightarrow C_{\text{track}} = 64 \times 512 \) bytes

- **Average time to read 128K bytes (Read 4 whole tracks)**
 - Average Time (ms): \(4 \left(4.18 + 8.35 \right) = 50.12 \) ms

- **Average time to read 128K bytes (Read 256 random sectors)**
 - Average Time (ms): \(256 \left(20 + 4.18 + 0.13 \right) = 6223.36 \) ms = 6.2 sec

- **Significant Effect:** Location of the sectors

Zoned Recording

- The greater the distance from the center \(\Rightarrow \)
 - The higher the recording density
 - The higher the data transfer rate
- Typically, 10 or more zones; max/min transfer rate about 0.90
 - All EDD and SCSI drives are now zoned (Hidden from PC BIOS)

Disk Scheduling Policies

- **Example (Start Cylinder = 100; Largest Cylinder # = 199)**
 - Cylinder Numbers in Request Queue: 55, 58, 39, 18, 90, 150, 160, 38
- **FIFO** (First-In-First-Out): 55, 58, 39, 18, 90, 160, 150, 38
 - **Unidirectional:** Increasing, goto max, goto 0, ...
- **SSTF** (Shortest-Seek-Time-First): 90, 58, 55, 39, 38, 18, 150, 160
 - **Bidirectional:** Increasing, goto max, decreasing, goto 0, ...
- **SCAN** (Elevator Algorithm): (right first) 150, 160, 199, 90, 58, 55, 39, 38, 18, 0
 - **Unidirectional:** Increasing, goto max, goto 0, increasing, ...
- **C-SCAN** (Circular SCAN): (right first) 150, 160, 199, 0, 18, 38, 39, 55, 58, 90
 - **Unidirectional:** Increasing, goto max, goto 0, increasing, ...
- **LOOK** (right first) 150, 160, 90, 58, 55, 39, 38, 18
 - **Don’t go to extreme cylinders unless necessary**
- **C-LOOK** (right first) 150, 160, 18, 38, 39, 55, 58, 90
Server Configurations

- **Laboratory (circa 1983) - $250K**
 - VAX 750 CPU (0.7 MIPS), 4 MB RAM, 2-250 MB CDC disk, 75 ips 1600 bpi tape, 10 Mbps Ethernet coax

- **Laboratory (circa 1992) - $60K**
 - Sun SPARC CPU, 16 MB RAM, 2-500 MB SCSI-1 disk, Exabyte tape, 10 Mbps Ethernet thin

- **Neuroscience Data Cache (circa 2000) - $500K**
 - Dual CPU SUN SPARCcenter, 1 GB RAM, 1.8 TB RAID-5 (48 x 9 GB + 24 x 18 GB + 24 x 36 GB SCSI-2, quad power, dual controller), 10/100 Mbps Ethernet cat5, 600 Mbps ATM fiber, remote DLT robot backup

- **Laboratory (circa 2005) - $25K**
 - Dual 3 GHz Xeon CPU, 2 GB RAM, 1.5 TB RAID-5, GigE copper, remote tape robot backup

The RAID Idea

- **Redundant Array of Inexpensive (Independent) Disks**
 - Set of physical disk drives seen by OS as a single logical drive
 - Data distributed across physical drives of an array
 - Redundant disk space is used to store parity information which guarantees data recoverability in case of disk failure

- **Motivation**
 - Replace large, expensive disk drives with multiple, less-expensive, smaller-capacity drives

- **Tradeoff**
 - Increase availability at the cost of increased unreliability (probability of a single failure)

RAID Levels

- **RAID 0: Striping**
- **RAID 1: Mirroring**
- **RAID 2: Hamming Code**
- **RAID 3: Bit-Interleaved Parity**
- **RAID 4: Block-Interleaved Parity**
- **RAID 5: Distributed RAID 4**
RAID 0 (Striping)

- A strip is N sectors
- Data are striped across the disk drives
 - Example: Strips 0, 1, 2, 3 = Stripe 0
- Performance: Function of request pattern and data layout
 - High Data Transfer Capacity
 - Need high transfer capacity from drive to host memory
 - Need requests to be for large amounts of logically contiguous data
 - Overlap seek and transfer times of all disk drives
 - Compare to 1 seek followed by large transfer while other drives are idle
 - High I/O Request Rate
 - Initiate concurrent, independent requests (each reading 1 strip)
- Disadvantage: One drive fails ⇒ Array is useless

Small versus large strip size? Concurrent transfer versus concurrent I/O requests.

Effect of Striping

- Two 1-stripe accesses (1 stripe = 1 block)
 - Non-RAID (1 Large Disk)
 - RAID 0 (2 Disks)
- One 2-stripe access (1 stripe = 1 block)
 - Non-RAID (1 Large Disk)
 - RAID 0 (2 Disks)

RAID 1 (Mirroring)

- Mirrors
RAID 1

Pros
- Easy to implement
 - Read Request: Service from disk drive which minimizes service time
 - Write Request: Update strip and its mirror in parallel
 - Simple recovery from disk failure: Access disk mirror
- Very good data reliability
- Improves read performance

Cons
- 100% storage overhead ➔ High byte cost

Case for RAID 1
- Storage costs are dropping; Down time cost is rising.

RAID 3 (Bit-Interleaved Parity)

Stripe bits or bytes over disks and compute parity over stripe

Simple parity bit computed for same bit position on all drives
- For m=4 drives, parity bit i on drive 4 (the parity drive):
 \[X4(i) = X0(i) \oplus X1(i) \oplus X2(i) \oplus X3(i) \]
- 1 parity drive, no matter how large the disk array
- Parallel access with data distributed in small strips

Recovery From Failure
- Reconstruct data from remaining drives until failed drive is replaced
- Example: Drive X1 fails when m=4 drives
 \[X1(i) = X0(i) \oplus X2(i) \oplus X3(i) \oplus X4(i) \]
 \[X4(i) \oplus X4(i) \oplus X1(i) = X0(i) \oplus X1(i) \oplus X2(i) \oplus X3(i) \oplus X4(i) \oplus X1(i) \]

RAID 3

Write Request
- Example: m=4 drives and update strip y on drive X1
 - Data drives: X0, X1, X2, X3
 - Parity drive: X4
- Operation
 - Summary: Parallel access of small strip y from each disk
 - Read strip y from all drives
 - Update strip y from drive X1
 - Compute strip y for drive X4
 - Write back strip y of all drives
- Con:
 - Every read or write needs to access all drives of a set ➔
 - Only 1 pending request per disk set
RAID 4 AND 5 (Block-level Parity)

RAID 4: Parity Disk
- \((Bit \ i, Block \ j) = f(Bit \ i, Block \ j, all \ data \ disks)\)
- Stripe blocks over disks and compute block parity over stripe of blocks
- Can read a single block in a stripe (independent drives)
- Write requires waiting for parity block(s) to be written
 - Parity drive becomes a bottleneck

RAID 5: Distribute parity blocks among all disks (Avoid parity disk bottleneck)
- The most popular type today
- Very good read performance
- Write performance is better than RAID 4, but is still slow because of parity block.