Hot Topics (CSE 422S)

Ken Wong
Washington University

kenw@wustl.edu
www.arl.wustl.edu/~kenw

Topics

- Chip Multiprocessors
 - Increasing clock speed → Increasing power/heat
 - Want higher speed but at about same power as 1 CPU
 - Multiple CPU/caches and memory attached to an interconnect

- Software Isolated Processes (MS Singularity)
 - Use SW verification instead of HW protection
 - Verify safe behavior (cannot construct or corrupt a memory ref.)
 - Type safe and memory safe operations

- OS Virtualization
 - Run multiple commodity OSes on the same hardware instance
 - e.g., XP and Linux on the same x86 processor
 - Want resource isolation and performance guarantees
 - OSes sit on top of a Virtual Machine Monitor

OS Virtualization

<table>
<thead>
<tr>
<th>VMs (Guest OSes)</th>
<th>User Software</th>
<th>User Software</th>
<th>User Software</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Linux</td>
<td>BSD</td>
<td>Win XP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VMM</th>
<th>virtual x86 CPU</th>
<th>virtual phy mem</th>
<th>virtual network</th>
<th>virtual blockdev</th>
</tr>
</thead>
</table>

- Virtual Machine Monitor (VMM)
 - Provides the illusion of many virtual machines
 - Enables server consolidation, application mobility, new distributed (Internet) services

Paravirtualization

- Def. Provide a VM abstraction that is similar but not identical to the underlying hardware

- Want
 - No modifications to application binaries
 - Support for full multi-application OSes
 - High performance and strong resource isolation

- Examples
 - Xen, Denali, VMware
Xen x86 Interface (1)

- Memory Management
 - Most difficult part of paravirtualization
 - x86 doesn't have software-managed TLB
 - TLB misses serviced by processor walking the page table
 - x86 TLB doesn't have identifier tags
 - Address space switches require complete TLB flush
 - Top 64 MB is reserved for Xen and is not accessible to guest OSes
 - All page table and segment table updates are validated by Xen

Xen x86 Interface (2)

- CPU
 - Xen runs in privilege ring 0 (highest)
 - Guest OS runs in privilege ring 1
 - Applications run in privilege ring 3
 - Privileged instructions (e.g., install new page table) are validated and executed by Xen instead of Guest OS
 - Exception handling (e.g., memory faults, system traps)
 - Registered with Xen by each Guest OS
 - System calls handled by fast handler which doesn't go thru Xen
 - Interrupts
 - Replaced by lightweight event system
 - Time
 - Each Guest OS has a timer interface (real and virtual time)

- Device I/O
 - Data transferred using asynchronous I/O rings

Current Approaches - Intel VT-x (1)

- New modes of CPU operation
 - VMX root for VMMs
 - VMX non-root for guest OSes

- Virtual Machine Control Structure (VMCS)
 - Contains guest state and host state
 - VM entry and VM exit triggered by certain instructions
 - VM entry
 - store host processor state and
 - load guest processor state
 - VM exit reverses VM entry
 - many instructions can trigger VM exit from guest processor state
 - VM entry takes 2409 cycles on Intel P4 architecture
 - Expect 937 cycles on next generation Intel Core architecture

Current Approaches - Intel VT-x (2)

- Extended Page Tables (EPT)
 - Eliminate need for VMM maintaining shadow page tables
 - avoids VM entries and exits
 - EPT adds separate set of hardware-walked page tables
 - maps guest physical addresses (really virtual addresses) to host physical addresses

- Tagged TLBs
 - Assign virtual-processor identifier (VPI) to each virtual machine
 - tag TLB entries with VPI
 - avoids flushing TLB on every VM entry and VM exit
Intel VT-d (I/O extensions)

- DMA remapping
 - Software-specified protection domains for pages
 - restrict page access only to devices assigned to a domain
 - e.g., permit DMA only between a device and guest address space

- Interrupt Virtualization
 - IOTLB caches address translation lookups for I/O
 - DMA identifier is PCI Bus/device/function
 - Guest OS is notified after DMA completion
 - done without going through VMM
 - uses Message Signaled Interrupt (MSI) containing id that is used to index into interrupt-remapping table

References

- Whitaker, Shaw and Gribble, “Denali: Lightweight Virtual Machines for Distributed and Networked Applications”
- Fisher-Ogden, “Hardware Support for Efficient Virtualization”
- Robin and Irvine, “Analysis of the Intel Pentium’s Ability to Support a Secure Virtual Machine Monitor”
- Osisek, Jackson and Gum, “Intel Virtualization Technology: Hardware Support for Efficient Processor Virtualization”
- Asanovic, et. al., “The Landscape of Parallel Computing Research: A View from Berkeley” (Many core chips)