CS533: PROTOCOLS FOR COMPUTER NETWORKS

Ken Wong
Washington University in St. Louis

kenw@arl.wustl.edu
www.arl.wustl.edu/~kenw
Copyright 2002

ASSIGNMENT

• Email to kenw@arl.wustl.edu the following in the BODY of the email in PLAIN TEXT:

 ★ Syntax
 <TAB> <TAB>
 | |
 v v
 CS533 last,first email Address

 ★ Example
 CS533 wong,ken kenw@arl.wustl.edu

 • Begin reading Stallings, Chapters 1-3

GENERAL INFORMATION

• Course Web Site: http://www.arl.wustl.edu/~kenw (Follow link)
 ★ Syllabus, latest handouts, solutions
• News Group: wu.cs.class.533
• Textbook
 ★ Stallings, High-Speed Networks and Internets
 ★ Stevens, TCP/IP Illustrated, Volume 1: The Protocols
• Other Books
 ★ Stevens, Unix Network Programming
 ★ Tannenbaum, Computer Networks
 ★ Partridge, Gigabit Networking
• Internet
 ★ www.ietf.org: Internet Engineering Task Force

EXAMPLE PROBLEMS

• Protocol implementation

 Implement a C/C++ transmitter and receiver for evaluating a family of
 sliding-window protocols. Your transmitter should establish a connection to
 your receiver through a third program called netsim that emulates packet
 loss and transmission delay. Experimentally determine the efficiency and
 goodput for window sizes of 1, ..., 256 packets. Compare with simulation
 results.

• Protocol simulation

 The course Web page contains the source code (C++) for a fluid simulation
 of a distributed queuing (DQ) algorithm. Design an algorithm for including
 the FCFS feature of output queuing and experimentally determine how well
 your algorithm mimics output queuing.

• Exercise

 Suppose that two CSMA/CD transmitters try to transmit one minimum-size
 frame at the same time on a shared medium. Let Z be a random variable
 that denotes the number of attempts before one transmitter is successful.
 Derive an expression for $E[Z]$, the expectation of Z and evaluate it for a 10
 Mbps network whose diameter is 1500 meters.
COURSE WORKLOAD AND GRADING

- Programs *(Simple C++ and Unix)*
 - About 2 or 3 protocol implementations
 - About 2 or 3 protocol simulations
- Several Exercises
- Two Exams: Midterm, Final
- Late Policy: Late submissions will **NOT** be accepted.
- Grader/Consultants: To Be Announced
- Workload: Expect to spend 7-10 hours/week outside of class
- Grading:
 - 60% Graded Assignments
 - 40% Exams (20% each)

COURSE MYTHS

- I have to know something about networking to take this course.
 - Graduate level maturity in science, engineering, programming, and mathematics
 - Mathematics (e.g., basic calculus, probability, logic) is our language
- This course is identical to CS423 *(Intro to Networking).*
 - CS5335 is deeper and leans more towards *science* and *implementation.*
- This is a course on how to write network programs.
 - I assume you can use C++ classes and can debug a multiprocess program
 - C++ programming is just a tool (like calculus) that every graduate student knows
- All graduate *(undergraduate)* students will get A's (C's).
- I will learn a lot.
 - You get as much as you put into the course.

INTERNETS AND THE INTERNET

- An Internet: A network composed of heterogeneous networks
- THE (Global) Internet: An internet that uses IP
- Goals of Internetworking
 - Universal connectivity
 - Uniform access (hide hardware/software heterogeneity)
- Killer Applications
 - Electronic mail
 - File transfer and Remote login
 - Network file system and Distributed computing
 - World Wide Web (WWW)
 - Multimedia

INTERNET HOSTS

![Internet Hosts Chart](http://www.isc.org and RFC 1296)
KEY INTERNET TECHNOLOGIES

- **TCP/IP** *(Matching Needs)*
 - Protocol layering
 - Emergence outside of the military network

- **Dynamic Routing** *(Evolution)*
 - Route discovery
 - Route adjustments

- **Packet Switching** *(Resilience to Failures)*

- **Ethernet**
 - Complements packet switching (WAN) at the LAN level