MULTIACCESS CHANNELS

Ken Wong
Washington University in St. Louis

kenw@arl.wustl.edu
www.arl.wustl.edu/~kenw

MULTIACCESS PROTOCOLS

- **Protocol Candidates**
 - Channel Partitioning (Frequency, Time, or Code Division Multiplexing)
 - Random Access (e.g., CSMA/CD)
 - Round-Robin (e.g., Token Passing)

- **The Ideal Protocol**
 - A single active node will get the entire channel bandwidth
 - N active nodes will get 1/N of the channel bandwidth
 - The protocol is distributed (no master node)
 - The protocol is simple to implement

FRAME TRANSMISSION

- 10 Mbps ⇒ 1 bit is injected onto the medium every 0.1 μsec
FRAME PROPAGATION AND TRANSMISSION

- **Frame Latency** = \(
\frac{3D}{2c} + \frac{L}{R}
\)

 Propagation time + Transmission time
- **Propagation Time** over the distance \(D\) in copper wire

 \[
 \tau = \frac{D}{\frac{3}{2}c} = \frac{3D}{2c}
 \]

 \(D\): Distance traveled by a bit (electrical pulse)
 \(c\): Speed of light in a vacuum (3 \(\times\) \(10^8\) m/sec)
 \(c' = \frac{2}{3}c\): Speed of an electron in copper (200 m/\(\mu\)sec)
- **Transmission Time** = \(
\frac{L}{R}
\)

 \(L\): Packet Length
 \(R\): Transmission Rate

FRAME LATENCY EXAMPLE

- **Given**

 * Bandwidth of 10 Mb/s*
 * Frame (Packet) size of 1,500 bytes*
 * Distance of 2,500 meters*
 * Sending and receiving overhead = 0 \(\mu\)sec*
 * Assume no signal attenuation*
- **What is the interbit time?** 0.1 \(\mu\)sec
- **What is the total latency of the frame from sender to receiver?**

 \(2,500/200 \mu\)sec + 12,000 \(\times\) 0.1 \(\mu\)sec = 12.5 + 1,200 = 1.2125 ms

 The transmission time dominates the propagation time!
- **What is the maximum collision time?**

 \(2 \times \frac{D}{c'} = 25 \mu\)sec

SPACE-TIME DIAGRAM (THE PARAMETER \(a\))

- **The performance of a packet-mode multiaccess channel is heavily influenced by \(a\)**

 \[
 a = \frac{\text{Max propagation delay}}{\text{Time to transmit average size packet}}
 \]

 The number of packets that a transmitting station can place on the medium before the farthest station receives the first bit
- **Small \(a\) (**<<** 1)**

 Propagation delay is a small fraction of the packet transmission time
 Every station receives at least part of the packet before source finishes transmission
 Usually small (0.01) for wired and wireless LANs, cellular telephony, packet radio
- **Large \(a\)**

 Source may transmit many packets before receiver sees the first bit
 Satellite links can have \(a\) as large as 100
PERFORMANCE METRICS

- Normalized Goodput
 - The fraction of a link’s capacity devoted to carrying non-retransmitted packets
 - Excludes time lost to protocol overhead, collisions, and retransmissions
 - Example
 - It takes 16 seconds to transmit a 10 MB (Kilobyte) file over a 10 Mbps link
 - Link capacity is 10 Mbps
 - Effective transmission rate (goodput) is 80/16 = 5 Mbps
 - Normalized goodput is 5/10 = 0.5
- Mean Delay: Mean time required to successfully transmit a packet
 - Collisions may require several transmission attempts
- Stability: Throughput doesn’t decrease with increasing offered load
- Fairness
 - Minimal fairness: No starvation (finite mean delay)
 - Stricter fairness: Equal share of bandwidth

THE MULTIACCESS PROBLEM

- What happens if two senders separated by 2000 meters on a wired LAN transmit at the same time?
 - First bit collides midway between the two hosts.
 - Collision occurs 5 μsec after first bit is sent
 - Collision causes a noisy signal which is detected 10 μsec after start of transmission
- Some Options for Single-Channel Transmissions
 - Transmitter listens on the bus for a collision (carrier sense)
 - Wired LANs generally have carrier sense (listen during transmission)
 - Wireless LANs generally do not since some hosts may be out of range
 - Transmitter receives a packet acknowledging receipt of the transmitted packet
 - Pass a around one special token that grants the holder access to the medium

PURE ALOHA

- Multiple access protocol for ground-based radio broadcasting
 - Transmit at any time
 - No ACK received ⇒ Collision ⇒ Wait a random time interval before resending
 - Throughput is maximized when all frames are the same size
- Vulnerability Period
 - Fixed length frames (t = time to transmit 1 frame)

P单纯ALOHA

- Pure Aloha
 - Start
 - Wait 1 RTT for ACK
 - RTT expired
 - No Collision
 - Max backoff
 - Done
 - Abort

- Slotted Aloha
 - Synchronize senders and send only at the beginning of a slot time
ALOHA CHANNEL UTILIZATION

- **Channel Utilization**: Fraction of time channel is busy transmitting a successful packet.
- **Performance Model Assumptions**
 - An infinite population Poisson source
 - Mean aggregate packet attempt rate: \(\lambda \) frames per second (includes retries)
 - One frame time is \(t \)
- **Note**: Channel utilization is maximized for fixed-length frames.

![Probability of Success vs. Number of Attempts](image)

ALOHA CHANNEL UTILIZATION

- **Number of Successful Transmissions in time \(T \)**
 \[
 n_{\text{Successful}} = \lambda T \times \text{Prob}[\text{Success}]
 \]
- **Channel Busy Time (due to successful packets)**
 \[
 t_{\text{Busy}} = t \times n_{\text{Successful}} = t \lambda T \text{Prob}[\text{Success}]
 \]
- **Utilization**:
 \[
 U = \frac{t_{\text{Busy}}}{T} = \lambda T \text{Prob}[\text{Success}]
 \]
- **Maximum utilization** is \(\frac{1}{2\lambda} = 0.184 \)
 - Method: Find \(\lambda \) such that \(\frac{dU}{d\lambda} = 0 \)
 - *How can we improve on this utilization?*

CSMA PROTOCOLS

- **IEEE 802.3**: A family of 1-persistent CSMA/CD with truncated binary exponential backoff
- **Carrier Sense Protocol**
 - Avoid "some" collisions by detecting "some" transmissions
 - Stations listen for a carrier (transmission) before transmitting
 - Frame transmission time > \(2T_{\text{MAX}} \), the max. round-trip propagation delay
- **Nonpersistent CSMA**
 - If medium is busy, station waits a random time interval and retries
 - Effect: Randomly probe the medium until it is idle
- **Persistent CSMA**
 - Station waits for the medium to become idle
PERSISTENT CSMA

- Clustering
 - If 2 stations find the medium busy, a collision is guaranteed when they both retry!
- \(p \)-persistence (slotted channels)
 - When channel becomes idle, either:
 - Send a frame with probability \(p \); or
 - Wait one time slot with probability \(1-p \) before repeating process.
- Idea: \(\Pr \{2 \text{ waiting stations will cause a collision}\} = p^2 \)
- Choice of \(p \): A tradeoff between 1) Performance under heavy load, and 2) Mean message delay
 - \(n \) waiting stations \(\Rightarrow \) Mean number of simultaneous sends is \(np \)
 - Want \(np < 1 \)

EXPOSENTIAL BACKOFF

- Each station checks if transmission was successful
- If a collision occurs, wait \(W \) time slots (\(2 \tau_{MAX} \))
 - Choose \(W \) equiprobably from \(0 \leq W < 2^B \), \(B = \min(n, 10) \)
 - Increment backoff count (\(B = 1, 2, 3, \ldots, 10 \))
 - \(2 \tau_{MAX} \): Maximum round-trip (two-way) propagation delay
- Backoff at most 15 times: \(B = 1, 2, \ldots, 10, 10, 10, 10, 10, 10 \)

CHANNEL UTILIZATION

IEEE 802.3

- IEEE 802.3: specifies a family of 1-persistent CSMA/CD with truncated binary exponential backoff running at speeds from 1 Mbps to 10 Mbps on various media
- Ethernet is a specific product that attempts to implement IEEE 802.3
- Minimum packet length is 64 bytes
- Every interface has a MAC address (e.g., 08:00:20:8d:65:80)
- IEEE 802.3 Frame Format (Ethernet uses Type Field in place of length field)
MEDIA OPTIONS

<table>
<thead>
<tr>
<th>Name</th>
<th>Cable</th>
<th>Max Segment</th>
<th>Nodes/Seg.</th>
<th>Advantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Base5</td>
<td>Thick Coax</td>
<td>500 m</td>
<td>100</td>
<td>Good for backbones</td>
</tr>
<tr>
<td>10Base2</td>
<td>Thin Coax</td>
<td>200 m</td>
<td>30</td>
<td>Cheap system</td>
</tr>
<tr>
<td>10Base-T</td>
<td>Twisted Pair</td>
<td>100 m</td>
<td>1024</td>
<td>Easy maintenance</td>
</tr>
<tr>
<td>10Base-F</td>
<td>Fiber Optics</td>
<td>2000 m</td>
<td>1024</td>
<td>Between buildings</td>
</tr>
</tbody>
</table>

- **Nomenclature**: xBASEy (e.g., 10BASE5)
 - x indicates network data rate in Mbps (e.g., 10 Mbps)
 - y indicates maximum segment length in 100 meters (e.g., 500 meters)
 - BASE indicates baseband signaling
- **Attenuation**: Signal loses strength as it travels through a lossy medium

CSMA/CA (WIRELESS LANS) (1)

- **Wireless LANs**
 - Use radio (or infrared) signals (2-3 Mbps or 11-54 Mbps)
 - Are noisy and unreliable
- **Multiple transmissions can occur simultaneously if signals don’t interfere**

![Diagram of A, B, C, D]

- **Problems**
 - Hidden Station: Can’t detect competitor because it is too far away
 - Exposed Station: A strong transmitter masks other stations

CSMA/CA (WIRELESS LANS) (2)

- **IEEE 802.11 (CSMA/CA)**
 - p-persistence but when idle, wait one interframe spacing before contending
 - Waits for random value chosen in [0, Contention Window]
 - Then, transmits packet and waits for ACK from receiver
 - If no ACK, use binary exponential backoff
 - If someone is transmitting, stop timer and resume it when transmission is done
- **IEEE 802.11 (MACAW, Multiple Access with Collision Avoidance for Wireless)**

![Diagram of A, B, C]

TOKEN-RING NETWORK

- Stations are logically ordered into a ring
- **One station holds a token packet**
 - Token gives right to send packets
 - Passes token after transmission
 - Transmitted packets return to sender and serve as implicit ACK
- **A second counterrotating ring serves as a backup**
- **Need to monitor for ring/host failure and lost token**
- **Fiber Distributed Data Interface (FDDI) is an example of a 100 Mbps token-ring**