Program B

- Fixed length packets (1000 bytes)
- Variable window size, \(W=W' \) = Maximum
- Send 1000 packets (same as Program A)
 - NEW packet header (See packet.h)

Server/Receiver
- Accept Policy: In-window
- ACK Policy: Your choice

Client/Sender
- RTT Estimation: Van Jacobson/Karel algorithm
 - Option: \(R(n), R'(n) \)
- Retransmit Policy: Your choice
- ETR (Kbps) = \((8M)/(\text{Elapsed Time}) \)
- Statistics

netsim

- netsim acts like a relay node
 - Configurable: Delay, Drop, Reorder via Xdelay
 - Forward and Reverse channel parameters

netsim Connect Protocol

Program B

- Fixed length packets (1000 bytes)
- Variable window size, \(W=W' \) = Maximum
- Send 1000 packets (same as Program A)
 - NEW packet header (See packet.h)

Server/Receiver
- Accept Policy: In-window
- ACK Policy: Your choice

Client/Sender
- RTT Estimation: Van Jacobson/Karel algorithm
 - Option: \(R(n), R'(n) \)
- Retransmit Policy: Your choice
- ETR (Kbps) = \((8M)/(\text{Elapsed Time}) \)
- Statistics

netsim

- netsim acts like a relay node
 - Configurable: Delay, Drop, Reorder via Xdelay
 - Forward and Reverse channel parameters

netsim Connect Protocol

Program B

- Fixed length packets (1000 bytes)
- Variable window size, \(W=W' \) = Maximum
- Send 1000 packets (same as Program A)
 - NEW packet header (See packet.h)

Server/Receiver
- Accept Policy: In-window
- ACK Policy: Your choice

Client/Sender
- RTT Estimation: Van Jacobson/Karel algorithm
 - Option: \(R(n), R'(n) \)
- Retransmit Policy: Your choice
- ETR (Kbps) = \((8M)/(\text{Elapsed Time}) \)
- Statistics

netsim

- netsim acts like a relay node
 - Configurable: Delay, Drop, Reorder via Xdelay
 - Forward and Reverse channel parameters

netsim Connect Protocol
netsim Connect Protocol and Usage

netsim
» A concurrent server (forks child for each connection)
» Acts like a relay node (client and server)
» Running your own netsim
» "-p Port" (XPORT) is normally 2002
» "-t Sec" triggers SIGALRM after Sec seconds
» "-d" turns on debug output

```
 netsim [-p Port] [-t Sec] [-d] >& Log &
netsim –p 2002 –t 300 # Defaults
```

netsim Reply Messages
» BANNER: ASCII string
» CONFIG: ASCII string "220 5 active, netsim v2.0"

netsim as a Packet Relay Node

```
Client
 write() HEADER
 write() DATA
 xread() ACK HEADER
```
```
 Child
 xread() HEADER
 xread() DATA
```
```
Server
 write() HEADER
 xread() DATA
 write() ACK HEADER
```

The netsim Packet Relay Protocol

```
Communication is actually through a TCP connection
netsim expects the stream of header-body pairs
Use xfgets() to read newline-terminated strings
Packet Header
» See packet.h
```
The netsim Model

Sender-Receiver Direction

- **Packet** \(1-p_1\) **Drop** \(p_1\) **Full Queue?** Yes **Drop** No **Delay \(d+X\)**

- **\(d\)** = Minimum delay
- **\(X\)** = Extra delay with probability \(p_2\) and 0 otherwise
 - i.e., It is a random variable
 - Can cause packets to get out of order
- **Queue size is 128 packets in each direction**
- **Receiver-sender direction looks the same except uses \(p_3\) and \(p_4\)**

Strategies

- **Mini-experiment**
 - Telnet to netsim to see if you can connect
- **Start with:**
 - No packet loss and no additional delay
 - Small number of packets
- **Read the FAQ**
- **Work from a firm code base**
- **Do things incrementally**
- **Measure**
- **For debugging, start by outputing just state evolution**
 - Add additional output as needed

Debugging Strategies (1)

- **Hand computation**
 - Compute \(R'(n)\) for error-free stop-and-wait with 4 pkts
- **Determine performance parameters for some cases**
 - No drops
 - Fixed window sizes: 1, 8, 64
 - RTT distribution for \(W=1\)
 - Compare with theory: i.e., Effect of pipelining
- **Run test cases using script(s) or Makefile**
 - Activate only primary debug messages
- **Debug messages**
 - Make it easy to understand output (e.g., Use tabs)
 - Label output lines (e.g., server, mod name)

Debugging Strategies (2)

- **Use your own netsim**
 - Turn on netsim debugging (-d)
- **Gather supporting information**
 - Number of retransmits
 - Number of timeouts
 - Perhaps by "window rounds"