Advanced Computer Systems Architecture

Chip-Multiprocessors: Applications and Architectures

CSE 526M
Prof. Patrick Crowley

Plan for Today

• Questions
• Today’s discussion
IXP2800 Organization

- 17 processors
- Hardware assists
- 10 “clusters”
- Multiple clocks
 - 1.4 GHz
 - 700 MHz
 - 200 MHz
 - 133 MHz

Cluster-based Organization

- Each cluster of microengines has its own
 - Command bus
 - SRAM bus
 - (Although figures are a bit ambiguous)
- Clusters + duplicate buses = reduced contention
 - Load balance across clusters
Media-Switch-Fabric Interface (MSF)

- Connects IXP to physical I/O interfaces
 - SPI-4 (for PHY devices), CSIX-L1 (for switch fabrics)
 - Can multiplex both simultaneously
- 10 Gb/s and 15 Gb/s in and out (or vice versa)
- Coming and going packets staged in receive and transmit buffers (RBUF, TBUF)
- Packets broken into chunks, called mpackets, which we will study in detail later
- MSF provides a programmer interface for packet reception and transmission

IXP Chassis

- Multiple buses interconnect IXP clusters
 - Connects microengine transfer registers to other resources
- Separate command and data buses
 - Similar to split transaction, but more sophisticated
 - Commands are like messages, notifying a resource of a pending service request
- Chassis was designed first
SRAM

- 4 independent quad data rate (QDR) SRAM controllers
 - Each channel 200 MHz, 32b wide
 - Up to 64 MB per channel
- Addressing
 - Logical width: 4 bytes (only access addresses 0, 4, 8, …)
 - Same as local memory and scratchpad
 - Addresses across channels do not overlap
 - Each channel gets only a fraction of the physical address space

SRAM, cont’d

- Supported Operations
 - Random reads/writes
 - Atomic operations for
 - Bit-test-and-set, Bit-test-and-clear, Bit-test, Bit-clear, Add, Subtract, Test-and-add, Test-and-clear, Swap, Increment, Decrement
 - Linked-list queue and dequeue
 - Max 64 elements per channel
 - Circular buffer (i.e., ring) inserts and deletes
 - ditto
DRAM

- 3 independent Rambus DRAM controllers
 - Each channel 133 MHz, 16b wide
 - Up to 1 GB per channel (up to 2 GB total)
- Controllers allow data to move directly from MSF to DRAM (i.e., not through an ME)
- Addressing
 - Logical width: 8 bytes (only access addresses 0, 8, 16, …)
 - Addresses are interleaved, or striped, across channels; implemented in hardware

Question

- Why Two Off-chip Memory Types?
Cryptography Units

- 2 identical units on the IXP2850
- Implements bulk encryption via
 - Advanced encryption standard (AES)
 - Triple Data Encryption Standard (3DES)
- Authentication
 - Secure Hash Algorithm (SHA-1)
 - Computes a one-way hash over input data (i.e., message digest)
 - Hashed Message Authentication Code (HMAC)
 - Keyed message digest over input data; also provides integrity check (i.e., data didn’t change in transit)
- Checksum accumulator

SHaC Unit

- Scratchpad memory
 - On-chip 16kB memory, with all the SRAM operations
 - 700 MHz
- Interface to XScale external peripherals and timers
- Hash unit
 - 48-, 64- or 128-bit hashes (via programmable polynomial division)
- CAP unit
 - Interface to all control status registers (CSRs) on-chip
 - Implements thread signaling, register reflection (allows threads to write/read other transfer registers), and ME/XScale interrupts
PCI Unit

- Interface to vanilla PCI interface, to connect to a host processor or peripheral devices
- Can act as either PCI Master or Target
- Can efficiently perform DMA bulk transfers to/from IXP SRAM or DRAM and external device across PCI bus

XScale Processor

- Implementation of ARM version 5TE
- Has traditional memory system
 - 32KB I and D caches
 - Virtual memory and MMU
- 700 MHz
- Manages the chip, used to handle “exceptional” conditions
- Runs Linux or real-time OS such as VxWorks
Microengines (2 clusters)

- ISA tuned for processing network data
- 4K instruction store
- Numerous, heterogeneous registers
- 8 thread contexts
- Hardware assists
- 1.4 GHz in .13 micron process, 6 stage pipeline

ME Design Goals

- Space efficiency (high compute density)
- Fast clock
- Many registers
- Local memory
- Efficient intra-ME communication
- Multithreading
ME Instruction Set

- Over 50 instructions
 - Arithmetic, logic (no F-P, no divide)
 - Bit, byte and word widths
 - Control flow
 - I/O instructions manipulating external resources such as SRAM, DRAM
 - Including SRAM ops discussed earlier
 - Instructions need not wait for results
 - Branch delay slots
 - CRC unit computes on 32 bit values

ME Registers

- All 32b, all banked
 - General-purpose registers – 256
 - Transfer registers – 512
 - Next-neighbor registers – 128
- Plus 640 words of local memory
ME CAM

• 16 entries, 32b tag and 4-bit state
• Usage:
 – Lookup a 32b value
 – That value is compared against all 16 entries
 – 9b result is returned
 • 1 bit indicates hit/miss
 • 4 bits are the stored state
 • 4 bits indicate matched entry
 – On miss,
 • 4 bits indicate LRU entry

ME Threads and Scheduling

• 8 HW-assisted threads of execution
 – Duplicate registers and control state
• HW-based arbiter maintains a round-robin schedule
 – Non-preemptive
• All execute from the same control store
Question

- What is the point of multithreading?

Sample Execution Timeline

- 3 threads (i.e., $M=3$) each with 4 blocks (i.e., $N=4$)
- Solid black line: Compute time
- Gray boxes: Memory time
- Red boxes: Stall time
- Background boxes: Idle time
- Completion time = sum of all compute and idle times
ME Signals

- Each ME has 15 numbered signals
- When making an external request, an ME can pass along a signal to be raised upon completion
- Control flow can be signal dependent
- Enables multiple outstanding references to the same unit
- In general, signals allow MEs to deal with resources asynchronously (big difference w.r.t. general purpose processors)

Challenge

- Solving important problems, cost effectively, with such a feature-rich, heterogeneous system
 - How much can compilers/tools can help is an open question
Assignment

• Submit a commentary on the following:
 – From your perspective, describe 3 significant differences between MPOC and the IXP 2800