Symbol Table and Hashing

- A (symbol) table is a set of table entries, \((K, V)\), each containing a unique key, \(K\), and a value (information), \(V\).

- Each key uniquely identifies its entry.

- Table searching: given a search key, \(K\), find the table entry, \((K, V)\).
 - Once such an entry is found, it may be retrieved, or its value, \(V\), may be updated, or the entire entry, \((K, V)\), may be removed from the table.
 - If no entry with key \(K\) exists in the table, a new table entry having \(K\) as its key may be inserted in the table.

- Hashing is a technique of storing values and searching for them in tables: linear, \(O(n)\), worst-case and extremely fast, \(O(1)\), average-case time.
Basic Features of Hashing

- Hashing computes an integer, called the hash code, for each object. The computation, called the hash function, \(h(K) \), maps objects (e.g., keys \(K \)) to array indices (e.g., \(0, 1, \ldots, i_{\text{max}} \)). An object having a key value \(K \) should be stored at location \(h(K) \), and the hash function must always return a valid index for the array. A perfect hash function produces a different index value for every key. But such a function cannot be always found.

- **Collision**: if two distinct keys, \(K_1 \neq K_2 \), map to the same table address, \(h(K_1) = h(K_2) \).

- **Collision resolution policy**: how to find additional storage in which to store one of the collided table entries.
How common are collisions?

Von Mises Birthday Paradox:
if there are more than 23 people in a room, the chance is greater than 50% that two or more of them will have the same birthday.

Thus, in the table that is only 6.3% full (since $23/365 = 0.063$) there is better than 50–50 chance of a collision!

Probability $Q_N(n)$ that none of the n items collides, being randomly tossed into a table with N slots:

\[
Q_N(1) = 1; \quad Q_N(2) = Q_N(1) \cdot \frac{N-1}{N}; \\
Q_N(3) = Q_N(2) \cdot \frac{N-2}{N}; \ldots; \\
Q_N(n) = Q_N(n-1) \cdot \frac{N-n+1}{N}.
\]
Probability $P_N(n)$ of one or more collisions

\[
P_N(n) = 1 - Q_N(n)
= 1 - \frac{N(N-1)\cdots(N-n+1)}{N^n}
\]

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{365}(n)$</td>
<td>0.12</td>
<td>0.41</td>
<td>0.71</td>
<td>0.89</td>
<td>0.97</td>
</tr>
</tbody>
</table>
Open addressing with linear probing

The simplest collision resolution policy: to successively search for the first empty entry at a lower location (if no such entry, then “wrap around” the table).

<table>
<thead>
<tr>
<th>Pairs [key,value]</th>
<th>Hash code: key/10</th>
<th>Table address</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20, A]</td>
<td>(h(20) = 2)</td>
<td>2</td>
</tr>
<tr>
<td>[15, B]</td>
<td>(h(15) = 1)</td>
<td>1</td>
</tr>
<tr>
<td>[45, C]</td>
<td>(h(45) = 4)</td>
<td>4</td>
</tr>
<tr>
<td>[87, D]</td>
<td>(h(87) = 8)</td>
<td>8</td>
</tr>
<tr>
<td>[39, E]</td>
<td>(h(39) = 3)</td>
<td>3</td>
</tr>
<tr>
<td>[31, F]</td>
<td>(h(31) = 3)</td>
<td>Collision!</td>
</tr>
</tbody>
</table>

Drawbacks: clustering of keys in the table.
Open addressing with double hashing

Better collision resolution policy reducing the likelihood of clustering: to hash the collided key again using a different hash function and use the result of the second hashing as an increment for probing table locations (including wraparound).

<table>
<thead>
<tr>
<th>Pairs [key,value]</th>
<th>Hash code: key/10</th>
<th>Table address</th>
<th>Hash address</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20, A]</td>
<td>h(20) = 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>[15, B]</td>
<td>h(15) = 1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[45, C]</td>
<td>h(45) = 4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>[87, D]</td>
<td>h(87) = 8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>[39, E]</td>
<td>h(39) = 3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>[31, F]</td>
<td>h(31) = 3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Collision!

Probe decrement Δ(31) = 4

[24, G] | h(24) = 2 | Collision! | Double hashing

Probe decrement Δ(24) = 6
Two more collision resolution techniques

Open addressing presents a problem if significant number of items need to be deleted, logically deleted items must remain in the table until the table can be reorganised.

Two techniques to attenuate this drawback:

• **Chaining**: all keys collided at a single hash address are placed on a linked list, or chain, started at that address.

• **Hash bucket**: a big hash table is divided into a number of small subtables, or buckets, and the hash function maps a key into one of the buckets; the keys are stored in each bucket sequentially in increasing order.
Universal classes of hash functions

Universal hashing – a random choice of the hash function from a large class of hash function to avoid bad performance on certain sets of input.

Let K be the key set, let N be the desired size of the range of the hash function, and let H be a set of functions that map K to $\{0, \ldots, N-1\}$. Then H is said to be universal provided that for any distinct $k, \kappa \in K$,

$$\left| \left\{ h \in H : h(k) = h(\kappa) \right\} \right| \leq \frac{1}{N}.$$

H is a universal class if no pair of distinct keys collide under more than $\frac{1}{N}$ of the functions in the class.
Choosing a hash function

Four basic methods: *division*, *folding*, *middle-squaring*, and *truncation*.

Division:
- choose a prime number as the table size N,
- convert keys, K, into integers,
- use the remainder $h(K) = K \mod N$ as a hash value of the key K,
- find a double hashing decrement using the quotient, $\Delta(K) = \max\{1, \left(\frac{K}{N}\right) \mod N\}$

Folding:
- divide the integer key, K, into sections, – add, subtract, and/or multiply them together for combining into the final value, $h(K)$.

$K = 013402122$ — sections 013, 402, 122 — $h(K) = 013 + 402 + 122 = 537$
Choosing a hash function

Middle-squaring:
- choose a middle section of the integer key, K,
- square the chosed section,
- use a middle section of the result as $h(K)$.

$K = 013402122$ — middle: 402 — $402^2 = 161404$ — middle: $h(K) = 6140$

Truncation:
- delete part of the key, K, — use the remaining digits (bits, characters) as $h(K)$.

$K = 013402122$ — last 3 digits: $h(K) = 122$

Notice that truncation does not spread keys uniformly into the table. Thus it is often used in conjunction with other methods.
Universal Class of Hash Functions by Division

Theorem:
Let the size of a key set, K, be a prime number: $|K| = M$. Let the members of K be regarded as the integers $0, \ldots, M - 1$.

For any numbers $a \in \{1, \ldots, M - 1\}$ and $b \in \{0, \ldots, M - 1\}$ let

$$h_{a,b}(k) = ((a \cdot k + b) \mod M) \mod M \ N.$$

Then

$$H = \{h_{a,b} : 1 \leq a < M \text{ and } 0 \leq b < M\}$$

is a universal class.

In practice: let M be the next prime number larger than the size of the key set. Then — choose randomly a and b such that $a > 0$ and use the hash function $h_{a,b}(k)$.
Efficiency of search in hash tables

Load factor λ: if a table of size N has exactly M occupied entries, then $\lambda = \frac{M}{N}$.

Approximate average numbers of probe addresses examined for a successful (S_λ) and unsuccessful (U_λ) search:

<table>
<thead>
<tr>
<th></th>
<th>OALP</th>
<th>OADH</th>
<th>SC</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_λ:</td>
<td>$0.5 \left(1 + \frac{1}{1-\lambda}\right)$</td>
<td>$\frac{1}{\lambda} \ln \left(\frac{1}{1-\lambda}\right)$</td>
<td>$1 + \frac{\lambda}{2}$</td>
</tr>
<tr>
<td>U_λ:</td>
<td>$0.5 \left(1 + \left(\frac{1}{1-\lambda}\right)^2\right)$</td>
<td>$\frac{1}{1-\lambda}$</td>
<td>λ</td>
</tr>
</tbody>
</table>

OALP – open addressing with linear probing
OADH – open addressing with double hashing
SC – separate chaining

OALP and OADH: $\lambda \leq 0.7$;
SC: λ may be higher than 1
Theoretical vs. Experimental Efficiency of Search

\(N = 997 \), average of 50 trials

Successful search \(S_\lambda \)

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>SC</th>
<th>OALP</th>
<th>OADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>1.05/1.04</td>
<td>1.06/1.05</td>
<td>1.05/1.05</td>
</tr>
<tr>
<td>0.25</td>
<td>1.12/1.12</td>
<td>1.17/1.16</td>
<td>1.15/1.15</td>
</tr>
<tr>
<td>0.50</td>
<td>1.25/1.25</td>
<td>1.50/1.46</td>
<td>1.39/1.37</td>
</tr>
<tr>
<td>0.75</td>
<td>1.37/1.36</td>
<td>2.50/2.42</td>
<td>1.85/1.85</td>
</tr>
<tr>
<td>0.90</td>
<td>1.45/1.44</td>
<td>5.50/4.94</td>
<td>2.56/2.63</td>
</tr>
<tr>
<td>0.99</td>
<td>1.49/1.49</td>
<td>50.5/16.4</td>
<td>4.65/4.79</td>
</tr>
</tbody>
</table>

Unsuccessful search \(U_\lambda \)

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>SC</th>
<th>OALP</th>
<th>OADH</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>0.10/0.10</td>
<td>1.12/1.11</td>
<td>1.11/1.11</td>
</tr>
<tr>
<td>0.25</td>
<td>0.25/0.21</td>
<td>1.39/1.37</td>
<td>1.33/1.33</td>
</tr>
<tr>
<td>0.50</td>
<td>0.50/0.47</td>
<td>2.50/2.38</td>
<td>2.00/2.01</td>
</tr>
<tr>
<td>0.75</td>
<td>0.75/0.80</td>
<td>8.50/8.36</td>
<td>4.00/4.10</td>
</tr>
<tr>
<td>0.90</td>
<td>0.90/0.93</td>
<td>50.5/39.1</td>
<td>10.0/10.9</td>
</tr>
<tr>
<td>0.99</td>
<td>0.99/0.97</td>
<td>5000/360.9</td>
<td>100.0/98.5</td>
</tr>
</tbody>
</table>
Java: hash tables

java.util package:
• Java 1.0 and 1.1: class Hashtable
• Java 1.2: classes HashMap and HashSet

Hashtable implementation:

• Any object can be stored in a hash table

• Objects used as keys must implement equals() and hashCode() methods:
 o if a.equals(b)
 then a.hashCode() must be equal to b.hashCode()

• Object get(Object key) —
 returns the object keyed by key

• Object put(Object key, Object value) —
 puts value to the hash table and returns old object
 keyed by key

Table has size and load factor: when number of entries
is greater than $\lambda \cdot$ size, the table is resized.

Collisions are resolved by chaining.
Class Hashtable

In Java 1.2 this class has been retrofitted to implement Map interface, so that it becomes a part of Java Collections Framework.

An instance of Hashtable has two parameters: initial capacity and load factor (default: 0.75).

Example: a hash table of numbers with their names as keys:

Hashtable numbers = new Hashtable();

numbers.put(‘one’, new Integer(1));
numbers.put(‘two’, new Integer(2));
numbers.put(‘ten’, new Integer(10));

To retrieve a number:

Integer n = (Integer)numbers.get(‘two’);
if (n != null)
 System.out.println(‘two = ’ + n);
Efficiency of Search for Table ADT Implementations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Sorted array</th>
<th>AVL tree</th>
<th>Hash table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize</td>
<td>$O(N)$</td>
<td>$O(1)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>Is full?</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Search*)</td>
<td>$O(\log N)$</td>
<td>$O(\log N)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$O(N)$</td>
<td>$O(\log N)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$O(N)$</td>
<td>$O(\log N)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Enumerate</td>
<td>$O(N)$</td>
<td>$O(N)$</td>
<td>$O(N \log N)$</td>
</tr>
</tbody>
</table>

*) also: Retrive, Update

To enumerate a hash table, entries must first be sorted in ascending order of their keys that takes $O(N \log N)$ time