CSE 240
Logic and Discrete Mathematics

Instructor: Todd Sproull

Department of Computer Science and Engineering
Washington University in St. Louis

CSE 240 Course Information

- **Time and Location**
 - Louderman 458
 - Tuesday and Thursday 11:30AM – 1:00PM
- **Website**
 - http://research.engineering.wustl.edu/~todd/cse240
- **Instructor Email Address**
 - todd@wustl.edu
- **Book**
 - Discrete Mathematics and Its Applications by Rosen 7th edition
- **Office Hours**
 - By Appointment
- **Head TA**
 - Emily Feng
- **TAs**
 - Daniel Munro
 - Anna Gautier
 - Makai Mann
 - Max Lyons
 - Emily Coco
 - Ke Xu
 - Gwynthel Pearson
 - Michael Wang
 - Cindy Le
 - Alexander Durgin
 - Trang Nguyen
 - Younis Mahmoud
 - Shitianyu Pan

- **What is this course about?**
 - An introduction to mathematical fundamentals needed by a Computer Scientist
 - Why is mathematics needed?
Grading

- **Three in class exams**
 - 18% of total grade per exam (54% total)

- **~10 Homework Assignments**
 - 36% of total grade
 - Lowest score dropped

- **~10 Short Quizzes and Group Assignments**
 - 10% of total grade
 - Lowest score dropped

- **No Final Exam**

Some of the Topics Covered

- **Logic**
 - Is this statement True or False?

- **Proofs**
 - Can you prove that your claim is True?
 - Direct, Indirection, and Proofs by Contradiction
 - Mathematical Induction

- **Counting**
 - How many ways can I pick n items from a set of m?
 - How do I win at Blackjack?

- **Probability**
 - Existence proofs
 - Expected value, variance...

- **Graphs**
 - Can we model a collection of computers connected together?

- **Finite State Machines**
 - Can a computer carry out this task?
 - How do we model computation?
Reading Assignment

• Read Sections 1.1 - 1.3 by Thursday

Section 1.1 Propositional Logic

• Proposition
 – A declarative statement that is either true or false

• Examples of propositions
 – $1 + 2 = 3$
 – $1 + 2 = 4$
 – Three is odd
 – Four is odd

• Not propositions
 – Funny
 – Apple
 – What time is it?

• Typically represented with the letters p, q, r, and s
 – Suppose p ...
Propositional Logic Negation

- Suppose \(p \) is a proposition
 - The negation of \(p \) is \(\neg p \)
 - "It is not the case that \(p \)"
 - Also represent by \(\bar{p} \)

- Example
 - Three is NOT odd
 - Four is NOT odd
 - March does NOT have 31 days

- Negate the following
 - At least 10 inches of rain fell today

- Answer
 - It is not the case that at least 10 inches of rain fell today
 - Less than 10 inches of rain fell today

- Truth table for negation:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Conjunction

- A conjunction is equivalent to using the word “AND”
 - Denoted by the \(\land \) symbol
 - Suppose \(p \) and \(q \) are propositions
 - \(p \land q \)

- A conjunction is TRUE when both \(p \) and \(q \) are TRUE

- Example
 - This class is fun AND I like pizza

- Truth Table for conjunction:

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \land q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Disjunction

- A disjunction is equivalent to the word “OR"
 - Denoted by the symbol \lor
 - $p \lor q$

- A disjunction is false when both p and q are false

- Example
 - Today is Friday OR it is raining today

- Truth table for Disjunction

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Exclusive Or

- The exclusive or is true when either p or q is TRUE
 - But not both p and q
 - Denoted by the symbol \oplus

- Example
 - I will EITHER pay attention in class OR fall asleep

- Truth Table for exclusive or

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$p \oplus q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Implications

- **Denoted by the symbol →**
 - $p \rightarrow q$ corresponds to “If p, then q” or “p implies q” or “q whenever p”

- **Example**
 - If I work hard in this class, then I will earn an A in CSE240
 - If today is Friday, then $2 + 3 = 5$ (True or False? Why?)
 - If today is Friday, then $2 + 3 = 6$ (True or False? Why)

- **Truth Table for implications**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>?</td>
</tr>
</tbody>
</table>

Truth table for $p \rightarrow q$

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
More about $p \rightarrow q$

- Different English representations of \rightarrow
 - p implies q
 - q whenever p

- x is odd $\rightarrow x + 1$ is even
 - If x is odd, it is true
 - If x is NOT odd, the whole statement is true

- Propositions can only be True or False
 - No undefined

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Logical Equivalence

- Denoted by the symbol \iff
 - $p \iff \neg \neg p$ corresponds to “p is logically equivalent to NOT NOT p”

- Consider $\neg p \lor q \iff p \rightarrow q$
 - Are they logically equivalent?
 - How can we prove that?

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$\neg p$</th>
<th>$\neg p \lor q$</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Converse, Contrapositive, and Inverse

- Formed as variants of the conditional statement $p \rightarrow q$
- **Converse**
 - $q \rightarrow p$
- **Contrapositive**
 - $\neg q \rightarrow \neg p$
- **Inverse**
 - $\neg p \rightarrow \neg q$

Examples
- Consider the conditional statement
 - “The St. Louis Cardinals win whenever it is raining”
 - “If it is raining, then the Cardinals win”
 - **Converse**
 - If the Cardinals win, then it is raining
 - **Contrapositive**
 - If the Cardinals do not win, then it is not raining
 - **Inverse**
 - If it is not raining, then the Cardinals do not win

Biconditional Statement

- Denoted by the symbol \iff
- $p \iff q$ corresponds to “p if and only if q”
 - or “p is necessary and sufficient for q”
 - or “p iff q”

- $p \iff q$ is true only when p and q have the same truth values

Example
- You can take the flight if and only if you buy a ticket

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$p \iff q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Truth Table for biconditional statement
Compound Propositions

- We are able to combine multiple propositions together to build more complicated propositions.

- Construct a truth table for the following proposition:
 - \((p \land q) \rightarrow (\neg p \lor q)\)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>p</td>
<td>q</td>
<td>\neg p</td>
<td>p \land q</td>
<td>\neg p \lor q</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Logic and Bit Operations

- Computers represent information using bits
 - A bit is a symbol with values 0 and 1

- Boolean Variables use values of True or False
 - Boolean variables can be represented with a bit

- Logical operations can be performed by replacing T and F with 1 and 0
 - Substitute \(\wedge\), \(\lor\), and \(\oplus\) with AND, OR, and XOR
 - Example: \(0 \lor 1 = 1\)

- Bit Strings are a sequence of 0 or more bits
 - length is string is the number of bits

- Able to perform bitwise operations on bit strings

- Example

<table>
<thead>
<tr>
<th>Bitwise OR</th>
<th>Bitwise AND</th>
<th>Bitwise XOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>111 11101</td>
<td>001 00001</td>
<td>110 11100</td>
</tr>
</tbody>
</table>

I need some help with my math.
Group Exercise