
Extensible Networking Platform 11 - CSE 438 – Mobile Application Development

Announcements

• Next Wednesday (Sept 4th) is our first ”Studio Day”
– If you have a Mac laptop running Xcode 10.2.1 come to

Steinberg 105 during the normal class time (11:30 – 1 PM)
– If you do not have a Mac laptop you will meet in Whitaker

316 either during class time or on Thursday
• I will email out your Whitaker lab time based on the Google doc

survey responses

• If you have a Mac laptop
– Install Xcode 10.2.1 before class

• https://developer.apple.com/download/more/

Extensible Networking Platform 22 - CSE 438 – Mobile Application Development

Today’s Topics

• Swift
– Overview
– Syntax
– Examples

• Xcode 10
– Playgrounds

Extensible Networking Platform 33 - CSE 438 – Mobile Application Development

Swift

• New programming language developed by Apple

• Announced at WWDC 2014

• Interoperates with Objective-C
– Both are considered first class citizens

• We are using Swift version 5

Extensible Networking Platform 44 - CSE 438 – Mobile Application Development

Hello World in Swift

print("Hello World")

• No semicolons

• No main method needed

Extensible Networking Platform 55 - CSE 438 – Mobile Application Development

Variables and Constants

• Swift uses var and let to describe variables and
constants

• Variables and constants have a type
– let languageName: String = "Swift"
– var version: Double = 1.0
– let isEverChanging: Bool = true

• Swift supports type inference
– let languageName = "Swift " //inferred as String
– var version = 1.0 //inferred as Double
– let isEverChanging = true //inferred as Bool

Extensible Networking Platform 66 - CSE 438 – Mobile Application Development

Common Data Types in Swift

• String
• Character
• Int
• Float
• Double
• Bool
• Optional

Extensible Networking Platform 77 - CSE 438 – Mobile Application Development

Strings

• Swift makes working with strings easy
let firstName = "John"
let lastName = "Smith"
let fullName = firstName + " " + lastName

• Enumerating through them is familiar
for character in firstName.characters{

print(character)
}

J
o
h
n

Extensible Networking Platform 88 - CSE 438 – Mobile Application Development

String Interpolation

let a = 2, b = 3

// "2 times 3 is 6"
let mathResult = "\(a) times \(b) is \(a * b)"

Extensible Networking Platform 99 - CSE 438 – Mobile Application Development

Collections - Arrays and Dictionaries

var names = ["Bob", "Alice", "Mike", "Jen"]
– Inferred as a typed collection of Strings

• I could also be more explicit:
var names: [String] = ["Bob", "Alice", "Mike", "Jen"]

var numberOfLegs = ["ant": 6, "snake": 0, "cow" :4]
– Inferred as a typed dictionary of Strings and Ints

• Or I could be more explicit:
var numberOfLegs: [String: Int] = ["ant": 6, "snake": 0, "cow" :4]

Extensible Networking Platform 1010 - CSE 438 – Mobile Application Development

Collections – Sets

A collection that stores distinct elements with no defined order

var favoriteGenres: Set<String> = ["Rock", "Classical", "Hip hop"]

var favoriteGenres: Set = ["Rock", "Classical", "Hip hop"]
– Inferred as a set of type Set<String> collection of Strings

print("I have \(favoriteGenres.count) music generes.")
//Prints "I have 3 favorite music genres."

if favoriteGenres.isEmpty {
print("Nothing here")

}

• Add unique strings to the set
favoriteGenres.insert("Jazz")

Extensible Networking Platform 1111 - CSE 438 – Mobile Application Development

Loops

while !done {
keepDoingSomething()

}
for num in 1...5 {

print("\(num) times 4 is \(num * 4)")
}

for num in 1..<5 {
doSomething(i)

}

//Prints from 1 up to and including 5

//Prints from 1 up to 4

Extensible Networking Platform 1212 - CSE 438 – Mobile Application Development

Conditionals

if legCount == 0 {
print("Does not walk")

} else if legCount == 1 {
print("Hopping around")

} else {
print("I can walk")

}

switch legCount {
case 0:
print("Does not walk")

case 1, 3, 5, 7:
print("Limps around")

default:
print("I can walk")

}

Extensible Networking Platform 1313 - CSE 438 – Mobile Application Development

Functions

func sayHi() {
print("Hi")

}
sayHi()

func sayHi(name: String) {
print("Hi \(name)!")

}
sayHi(name: "Bob")

func sayHi(name: String = "CSE 438") {
print("Hi \(name)!")

}
sayHi()
sayHi(name: "Bob")

//Prints Hi CSE 438
//Prints Hi Bob

Extensible Networking Platform 1414 - CSE 438 – Mobile Application Development

Functions
func sayHi(name: String = "CSE 438") -> String {

return "Hi " + name
}

let name = sayHi()

func refreshWebSite() -> (Int, String) {
// refresh
return (200, "Success")

}
let (statusCode, message) =refreshWebSite()

//Name contains "Hi CSE 438"

Extensible Networking Platform 1515 - CSE 438 – Mobile Application Development

Closures
• Self-contained blocks of functionality that can be

passed around

let displayGreeting = {
print("Hello Class")

}

let displayGreeting: () -> () = {
print("Hello Class")

}

displayGreeting()

//Inferred as this
//looks very similar to a
function (named closure)

Extensible Networking Platform 1616 - CSE 438 – Mobile Application Development

Optionals
• Optionals handle the absence of a value

– There is a value and it equals x or there isn’t a value

var numberOfLegs = ["ant": 6, "snake": 0, "cow" :4]
let possibleNumLegs = numberOfLegs["goat"] ???
let possibleNumLegs: Int? = numberOfLegs["goat"] //Value or nil

If possibleNumLegs != nil {
let legCount = possibleNumLegs! //Use ! to unwrap the optional
print("Goat has \(legCount) legs")

}

• Shorthand for above, if let
If let legCount = possibleNumLegs {

print("Goat has \(legCount) legs")
}

Extensible Networking Platform 1717 - CSE 438 – Mobile Application Development

Enumerations
• A common type for a group of related values
• Much more powerful than enumerations in the C language
• Allows for associated values of ANY type (not just integer

values)

enum CompassPoint {
case north
case south
case east
case west

}

Extensible Networking Platform 1818 - CSE 438 – Mobile Application Development

Enumerations
enum CompassPoint {

case north
case south
case east
case west

}
var directionToHead = CompassPoint.west
directionToHead = .south

switch directionToHead {
case .north:

print("Lots of planets have a north")
case .south:

print("Watch out for penguins")
case .east:

print("Where the sun rises")
case .west:

print("Where the skies are blue")
}

// Prints "Watch out for penguins"

Extensible Networking Platform 1919 - CSE 438 – Mobile Application Development

Classes and Structures (structs)
• General purpose constructs which are the

building blocks of your code
• You define methods and properties to add

functionality

• Classes have additional capabilities that structs
do not
– Inheritance enables one class to inherit

characteristics of another
– Type casting allows you to treat an instance as a

superclass or subclass from their class hierarchy

Extensible Networking Platform 2020 - CSE 438 – Mobile Application Development

Classes
class Person {

var age = 21 //defines the properties

var description: String { //defines a computed property
get {

return "You are \(age) years old"
}

}
}

let somePerson = Person()
print("Hello, you are \(somePerson.age) years old")

Extensible Networking Platform 2121 - CSE 438 – Mobile Application Development

Properties
• Associated values with a particular class, struct, or enum
• Properties are either stored or computed

– Stored properties are constants and variables associated with an instance
• Not available in an enum

– Computed properties are calculated

struct FixedLengthRange {
var firstValue: Int
let length: Int

}

var rangeOfThreeItems = FixedLengthRange(firstValue: 0, length: 3)
// the range represents integer values 0, 1, and 2

rangeOfThreeItems.firstValue = 6
// the range now represents integer values 6, 7, and 8

Extensible Networking Platform 2222 - CSE 438 – Mobile Application Development

Extensions

• Adds new functionality to an existing structure,
class, enumeration or protocol

• Extensions support the following features:
– Add computed instance and type properties
– Specify instance and type methods
– Make existing type conform to a protocol

• Extensions may add new functionality to a type,
but are unable to override existing functionality

Extensible Networking Platform 2323 - CSE 438 – Mobile Application Development

Extensions
extension Double {

var km: Double { return self * 1_000.0 }
var m: Double { return self }
var cm: Double { return self / 100.0 }
var mm: Double { return self / 1_000.0 }
var ft: Double { return self / 3.28084 }

}

let oneInch = 25.4.mm
print("One inch is \(oneInch) meters")

// Prints "One inch is 0.0254 meters"

let threeFeet = 3.ft
print("Three feet is \(threeFeet) meters")

// Prints "Three feet is 0.914399970739201 meters"

Extensible Networking Platform 2424 - CSE 438 – Mobile Application Development

More Information about Swift Language

• Official Swift Programming Guide
– https://docs.swift.org/swift-book/index.html

• WWDC 2016 – 2019 Videos
– developer.apple.com

Extensible Networking Platform 2525 - CSE 438 – Mobile Application Development

Examples in Playground

